14 research outputs found
Peer review i et obligatorisk bachelorkursus for civilingeniørstuderende i medikoteknik
Et nyudviklet peer review-system, der integrerer studenterdata, administration og grafiske procesoversigter, blev afprøvet i et obligatorisk bachelorkursus. Overens-stemmelse mellem de studerende og hjælpelærernes kvantitative bedømmelser blev undersøgt for en relativt udfordrende opgave med 15 delspørgsmål. 49 stude-rende afleverede besvarelser. Efterfølgende blev hver besvarelse bedømt af tre medstuderende, svarende til at 735 delbesvarelser blev bedømt. Ud af disse var der enighed mellem studenterbedømmerne og hjælpelærerne i 480 tilfælde (65 %). I under 3,5 % af tilfældene var der total uenighed. Der var tendens til, at jo mere rig-tigt en besvarelse blev bedømt, eller jo mere konkret svaret var, des mere enighed. En interviewundersøgelse hos de studerende viste stor opbakning til fremgangsmå-den og viste også, at de studerende fandt det meget nyttigt at se andre studerendes besvarelser såvel som rettevejledningen. Afslutningsvis gives en række anbefalinger til processen og systemet
Peer review i et obligatorisk bachelorkursus for civilingeniørstuderende i medikoteknik
Et nyudviklet peer review-system, der integrerer studenterdata, administration og grafiske procesoversigter, blev afprøvet i et obligatorisk bachelorkursus. Overens-stemmelse mellem de studerende og hjælpelærernes kvantitative bedømmelser blev undersøgt for en relativt udfordrende opgave med 15 delspørgsmål. 49 stude-rende afleverede besvarelser. Efterfølgende blev hver besvarelse bedømt af tre medstuderende, svarende til at 735 delbesvarelser blev bedømt. Ud af disse var der enighed mellem studenterbedømmerne og hjælpelærerne i 480 tilfælde (65 %). I under 3,5 % af tilfældene var der total uenighed. Der var tendens til, at jo mere rig-tigt en besvarelse blev bedømt, eller jo mere konkret svaret var, des mere enighed. En interviewundersøgelse hos de studerende viste stor opbakning til fremgangsmå-den og viste også, at de studerende fandt det meget nyttigt at se andre studerendes besvarelser såvel som rettevejledningen. Afslutningsvis gives en række anbefalinger til processen og systemet
Exploring white matter dynamics and morphology through interactive numerical phantoms: the White Matter Generator
Brain white matter is a dynamic environment that continuously adapts and reorganizes in response to stimuli and pathological changes. Glial cells, especially, play a key role in tissue repair, inflammation modulation, and neural recovery. The movements of glial cells and changes in their concentrations can influence the surrounding axon morphology. We introduce the White Matter Generator (WMG) tool to enable the study of how axon morphology is influenced through such dynamical processes, and how this, in turn, influences the diffusion-weighted MRI signal. This is made possible by allowing interactive changes to the configuration of the phantom generation throughout the optimization process. The phantoms can consist of myelinated axons, unmyelinated axons, and cell clusters, separated by extra-cellular space. Due to morphological flexibility and computational advantages during the optimization, the tool uses ellipsoids as building blocks for all structures; chains of ellipsoids for axons, and individual ellipsoids for cell clusters. After optimization, the ellipsoid representation can be converted to a mesh representation which can be employed in Monte-Carlo diffusion simulations. This offers an effective method for evaluating tissue microstructure models for diffusion-weighted MRI in controlled bio-mimicking white matter environments. Hence, the WMG offers valuable insights into white matter's adaptive nature and implications for diffusion-weighted MRI microstructure models, and thereby holds the potential to advance clinical diagnosis, treatment, and rehabilitation strategies for various neurological disorders and injuries
A Sound Approach to Language Matters: In Honor of Ocke-Schwen Bohn
The contributions in this Festschrift were written by Ocke’s current and former PhD-students, colleagues and research collaborators. The Festschrift is divided into six sections, moving from the smallest building blocks of language, through gradually expanding objects of linguistic inquiry to the highest levels of description - all of which have formed a part of Ocke’s career, in connection with his teaching and/or his academic productions: “Segments”, “Perception of Accent”, “Between Sounds and Graphemes”, “Prosody”, “Morphology and Syntax” and “Second Language Acquisition”. Each one of these illustrates a sound approach to language matters
Advancing the foundation for white matter modeling in dMRI
The brain comprises a network of microscopic nerve cells, communicating through electrochemical signals to pass information between different brain centres. Especially, the morphology of the axons plays a crucial role in how the signals propagate, and changes to these pathways can lead to changes in brain function. Currently, only one method enables the quantification of these morphologies in the living brain: diffusion-weighted MRI (dMRI). However, the size of MRI voxels is typically in the order of mm, while the diameters of axons are in the order of μm. Extracting the information entangled in the signal therefore requires intricate modeling. This is the main challenge of dMRI. This PhD project advances the foundation for modeling the dMRI signal through two contributions:1. By improving our understanding of how the magnetic properties of the water molecules interact with the magnetic susceptibility of the myelinated axons in brain white matter. The interaction was known to cause a signal bias depending on the orientation between the axons and the static magnetic field of the MRI scanner. In this project, it was discovered that the orientation-dependency can be utilised to reveal specific morphologies of the myelinated axons. Even non-circular cross-sections, which no MRI contrast has been capable of previously. This opens up new opportunities for the characterisation of changes to axon morphology inside the brain.2. By tuning and validating a toolbox for generating different realistic configurations of numerical brain white matter phantoms. This enables the study of how dynamic properties of glial cells impact the morphology of axons, and can be used to identify distinct dMRI signatures associated with specific dynamic events. These signatures can serve as novel disease biomarkers and enhance disease monitoring strategies.By improving the foundation for model development for dMRI, the work of this PhD project will contribute to advancing future models for decoding microstructure parameters from brain white matter.<br/