21 research outputs found

    Association between gestational levels of toxic metals and essential elements and cerebral palsy in children

    Get PDF
    Introduction Cerebral palsy (CP) is the most common motor disability in childhood, but its causes are only partly known. Early-life exposure to toxic metals and inadequate or excess amounts of essential elements can adversely affect brain and nervous system development. However, little is still known about these as perinatal risk factors for CP. This study aims to investigate the associations between second trimester maternal blood levels of toxic metals, essential elements, and mixtures thereof, with CP diagnoses in children. Methods In a large, population-based prospective birth cohort (The Norwegian Mother, Father, and Child Cohort Study), children with CP diagnoses were identified through The Norwegian Patient Registry and Cerebral Palsy Registry of Norway. One hundred forty-four children with CP and 1,082 controls were included. The relationship between maternal blood concentrations of five toxic metals and six essential elements and CP diagnoses were investigated using mixture approaches: elastic net with stability selection to identify important metals/elements in the mixture in relation to CP; then logistic regressions of the selected metals/elements to estimate odds ratio (OR) of CP and two-way interactions among metals/elements and with child sex and maternal education. Finally, the joint effects of the mixtures on CP diagnoses were estimated using quantile-based g-computation analyses. Results The essential elements manganese and copper, as well as the toxic metal Hg, were the most important in relation to CP. Elevated maternal levels of copper (OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element interactions that were associated with CP were observed, and that sex and maternal education influenced the relationships between metals/elements and CP. In the joint mixture approach no significant association between the mixture of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified. Conclusion Using mixture approaches, elevated levels of copper and manganese measured in maternal blood during the second trimester could be related to increased risk of CP in children. The inverse associations between maternal Hg and CP could reflect Hg as a marker of maternal fish intake and thus nutrients beneficial for foetal brain development

    Association between gestational levels of toxic metals and essential elements and cerebral palsy in children

    Get PDF
    IntroductionCerebral palsy (CP) is the most common motor disability in childhood, but its causes are only partly known. Early-life exposure to toxic metals and inadequate or excess amounts of essential elements can adversely affect brain and nervous system development. However, little is still known about these as perinatal risk factors for CP. This study aims to investigate the associations between second trimester maternal blood levels of toxic metals, essential elements, and mixtures thereof, with CP diagnoses in children.MethodsIn a large, population-based prospective birth cohort (The Norwegian Mother, Father, and Child Cohort Study), children with CP diagnoses were identified through The Norwegian Patient Registry and Cerebral Palsy Registry of Norway. One hundred forty-four children with CP and 1,082 controls were included. The relationship between maternal blood concentrations of five toxic metals and six essential elements and CP diagnoses were investigated using mixture approaches: elastic net with stability selection to identify important metals/elements in the mixture in relation to CP; then logistic regressions of the selected metals/elements to estimate odds ratio (OR) of CP and two-way interactions among metals/elements and with child sex and maternal education. Finally, the joint effects of the mixtures on CP diagnoses were estimated using quantile-based g-computation analyses.ResultsThe essential elements manganese and copper, as well as the toxic metal Hg, were the most important in relation to CP. Elevated maternal levels of copper (OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element interactions that were associated with CP were observed, and that sex and maternal education influenced the relationships between metals/elements and CP. In the joint mixture approach no significant association between the mixture of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified.ConclusionUsing mixture approaches, elevated levels of copper and manganese measured in maternal blood during the second trimester could be related to increased risk of CP in children. The inverse associations between maternal Hg and CP could reflect Hg as a marker of maternal fish intake and thus nutrients beneficial for foetal brain development

    The Oxytocin Genetic Pathway Links Severe Mental Illness and Metabolic Syndrome

    No full text
    Oxytocin is a hormone that is primarily produced in the brain, which has traditionally been associated with childbirth, breastfeeding, and social behaviour. However, more recent evidence has also suggested a link with cardiovascular conditions and diabetes. One-third of patients with bipolar disorder and schizophrenia suffer from metabolic syndrome, which is a cluster of conditions (such as increased blood pressure, high blood sugar, excess body fat around the waist, and abnormal blood fat levels) that occur together, increasing your risk of heart disease, stroke, and type 2 diabetes. Moreover, the reported rates of loneliness are ~2.3 times higher in patients with schizophrenia and bipolar disorder than in the general population. Emerging evidence has linked the genes underlying the oxytocin system to various potential causes of both psychiatric symptoms and metabolic syndrome in schizophrenia and bipolar disorder. Therefore, the aim of this thesis was to investigate the contribution of these oxytocin genes to the overlap between severe mental illness and metabolic disorders in just under half a million individuals. The findings of this thesis point to a wide-ranging involvement of oxytocin in a variety of mechanisms tied to cardiovascular and metabolic disease, such as bone density and where fat accumulates on the body, as well as dietary behaviours such as portion size and the sugar content of meals. The oxytocin system was also found to be involved in various social features of psychiatric disorders, such as loneliness. Altogether, this work points to oxytocin’s therapeutic potential for a variety of conditions

    Improving the precision of intranasal oxytocin research

    No full text
    The neuropeptide oxytocin has been popularized for its role in social behaviour and nominated as a candidate treatment for several psychiatric illnesses. However, results so far have failed to reliably translate from animal models to human research. There have been justified calls to improve intranasal oxytocin delivery methodology, in terms of verifying that intranasal administration increases central levels of oxytocin. Nonetheless, improved methodology needs to be coupled with a robust theory of the role of oxytocin in behaviour and physiology to ask meaningful research questions. Moreover, stringent methodology based on robust theory may yield interesting results, but such findings will have limited utility if they are not reproducible. In this article, we outline how the precision of intranasal oxytocin research can be improved by the complementary consideration of methodology, theory, and reproducibility

    Associations of loneliness and social isolation with cardiovascular and metabolic health: a systematic review and meta-analysis protocol

    No full text
    Background A growing number of studies suggest that social isolation and loneliness are associated with premature mortality and are more prevalent among people with mental illness than in the general population, outlining many potential paths to disease still to be elucidated. The purpose of this meta-analysis is to examine the relationship between loneliness, social isolation, and established cardiovascular/metabolic risk factors and disorders, especially in severe mental illness, and to account for potential heterogeneity in the literature. Methods/design Studies that report measures of loneliness and/or social isolation along with cardiovascular/metabolic risk factors will be identified. PubMed, EMBASE (through Ovid SP), Scopus, and PsycINFO (through Ovid SP) will be searched, along with citation lists of retrieved articles and the Cochrane Database of Systematic Reviews. Grey literature will be searched using Google Scholar. Data will be extracted from eligible studies for a random effects meta-analysis. For each study, a summary effect size, heterogeneity, risk of bias, publication bias, and the effect of categorical and continuous moderator variables will be determined. Discussion This proposed systematic review and meta-analysis will identify and synthesise evidence to determine if there is an association between loneliness, social isolation, and cardiovascular/metabolic risk factors, with a special focus on severe mental illnesses. The results will help determine links and promising avenues of further research. Systematic review registration PROSPERO CRD4201811191

    Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study

    No full text
    Loneliness is linked to increased risk for Alzheimer's disease, but little is known about factors potentially contributing to adverse brain health in lonely individuals. In this study, we used data from 24,867 UK Biobank participants to investigate risk factors related to loneliness and estimated brain age based on neuroimaging data. The results showed that on average, individuals who self-reported loneliness on a single yes/no item scored higher on neuroticism, depression, social isolation, and socioeconomic deprivation, performed less physical activity, and had higher BMI compared to individuals who did not report loneliness. In line with studies pointing to a genetic overlap of loneliness with neuroticism and depression, permutation feature importance ranked these factors as the most important for classifying lonely vs. not lonely individuals (ROC AUC = 0.83). While strongly linked to loneliness, neuroticism and depression were not associated with brain age estimates. Conversely, objective social isolation showed a main effect on brain age, and individuals reporting both loneliness and social isolation showed higher brain age relative to controls – as part of a prominent risk profile with elevated scores on socioeconomic deprivation and unhealthy lifestyle behaviours, in addition to neuroticism and depression. While longitudinal studies are required to determine causality, this finding may indicate that the combination of social isolation and a genetic predisposition for loneliness involves a risk for adverse brain health. Importantly, the results underline the complexity in associations between loneliness and adverse health outcomes, where observed risks likely depend on a combination of interlinked variables including genetic as well as social, behavioural, physical, and socioeconomic factors

    Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study

    No full text
    Loneliness is linked to increased risk for Alzheimer’s disease, but little is known about factors potentially contributing to adverse brain health in lonely individuals. In this study, we used data from 24,867 UK Biobank participants to investigate risk factors related to loneliness and estimated brain age based on neuroimaging data. The results showed that on average, individuals who self-reported loneliness on a single yes/no item scored higher on neuroticism, depression, social isolation, and socioeconomic deprivation, performed less physical activity, and had higher BMI compared to individuals who did not report loneliness. In line with studies pointing to a genetic overlap of loneliness with neuroticism and depression, permutation feature importance ranked these factors as the most important for classifying lonely versus not lonely individuals (ROC AUC = 0.83). While strongly linked to loneliness, neuroticism and depression were not associated with brain age estimates. Conversely, objective social isolation showed a main effect on brain age, and individuals reporting both loneliness and social isolation showed higher brain age relative to controls - as part of a prominent risk profile with elevated scores on socioeconomic deprivation and unhealthy lifestyle behaviours, in addition to neuroticism and depression. While longitudinal studies are required to determine causality, this finding may indicate that the combination of social isolation and a genetic predisposition for loneliness involves a risk for adverse brain health. Importantly, the results underline the complexity in associations between loneliness and adverse health outcomes, where observed risks likely depend on a combination of interlinked variables including genetic as well as social, behavioural, physical, and socioeconomic factors

    Oxytocin-pathway polygenic scores for severe mental disorders and metabolic phenotypes in the UK Biobank

    No full text
    Abstract Oxytocin is a neuromodulator and hormone that is typically associated with social cognition and behavior. In light of its purported effects on social cognition and behavior, research has investigated its potential as a treatment for psychiatric illnesses characterized by social dysfunction, such as schizophrenia and bipolar disorder. While the results of these trials have been mixed, more recent evidence suggests that the oxytocin system is also linked with cardiometabolic conditions for which individuals with severe mental disorders are at a higher risk for developing. To investigate whether the oxytocin system has a pleiotropic effect on the etiology of severe mental illness and cardiometabolic conditions, we explored oxytocin’s role in the shared genetic liability of schizophrenia, bipolar disorder, type-2 diabetes, and several phenotypes linked with cardiovascular disease and type 2 diabetes risk using a polygenic pathway-specific approach. Analysis of a large sample with about 480,000 individuals (UK Biobank) revealed statistically significant associations across the range of phenotypes analyzed. By comparing these effects to those of polygenic scores calculated from 100 random gene sets, we also demonstrated the specificity of many of these significant results. Altogether, our results suggest that the shared effect of oxytocin-system dysfunction could help partially explain the co-occurrence of social and cardiometabolic dysfunction in severe mental illnesses
    corecore