5 research outputs found

    Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Get PDF
    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods

    SEXTANT X-Ray Pulsar Navigation Demonstration: Additional On-Orbit Results

    Get PDF
    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station, launched in June of 2017. In late 2017, SEXTANT successfully completed a first demonstration of in-space and autonomous X-ray pulsar navigation (XNAV). This form of navigation relies on processing faint signals from millisecond pulsars-rapidly rotating neutron stars that appear to pulsate in the X-ray band-and could potentially provide a GPS-like navigation capability applicable throughout the solar-system and beyond. In this work, we briefly review prior SEXTANT results and then present new results focusing on: making use of the high- flux but rotationally unstable Crab pulsar, and using XNAV to estimate position, velocity, and time in the presence of an imperfect local clock

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF
    corecore