5 research outputs found

    Etude des mécanismes et des cinétiques de corrosion aqueuse de l alliage d aluminium AlFeNi utilisé comme gainage du combustible nucléaire de réacteurs expérimentaux

    No full text
    Pour le réacteur nucléaire expérimental Jules Horowitz, l'alliage d'aluminium AlFeNi sera utilisé pour le gainage du combustible nucléaire. Cet alliage (Al 1%Fe 1%Ni 1%Mg) a été développé pour sa bonne résistance à la corrosion aqueuse à haute température. Pourtant à ce jour peu d'études ont porté sur les processus de dégradation en milieu aqueux et sur les effets de l'irradiation sur cet alliage. Or la conception du réacteur nécessite une meilleure compréhension des mécanismes de corrosion. Des expériences de corrosion ont donc été menées en autoclaves à 70C, 165C et 250C sur des tôles en AlFeNi, représentatives du gainage combustible. Différentes techniques ont été utilisées pour caractériser le produit de corrosion : MEB, MET, MASE, DRX, spectroscopie Raman. Les observations associées montrent une structure duplex : une couche dense et amorphe près du métal et une couche cristalline et poreuse au contact de l'eau. Leurs compositions chimiques sont différentes et dépendent des éléments solubilisés dans l eau. Complétées par des expériences de marquage, ces analyses ont démontré que cette structure résulte d'un mécanisme de croissance mixte des couches d'oxyde avec des diffusions cationique et anionique cinétiquement couplées. Des quantifications des vitesses de relâchement en solution, des épaisseurs d'oxyde et de corrosion de l'alliage ont permis de proposer un mécanisme de dégradation de l'alliage AlFeNi associant diffusion cationique et processus de dissolution/précipitation en solution. Une comparaison avec des couches d'oxydes formées en réacteur sur des plaques combustibles a mis en évidence l'importance du régime hydraulique sur les processus de dégradation de l'alliage, l'irradiation semblant être un paramètre de second ordre.For the Jules Horowitz new material-testing reactor (JHR), an aluminium base alloy, called AlFeNi, will be used for the cladding of the fuel plates. This alloy (Al 1% Fe 1% Ni 1 % Mg) which is already used as fuel cladding, was developed for its good corrosion resistance in water at high temperatures. However, few studies dealing with the alteration process in water and the relationships with irradiation effects have been performed on this alloy. The conception of the JHR fuel requires a better knowledge of the corrosion mechanisms. Corrosion tests were performed in autoclaves at 70C, 165C and 250C on AlFeNi plates representative of the fuel cladding. Several techniques were used to characterize the corrosion scale: SEM, TEM, EPMA, XRD, Raman spectroscopy. Our observations show that the corrosion scale is made of two main layers: a dense amorphous scale close to the metal and a porous crystalline scale in contact with the water. More than the morphology, the chemical compositions of both layers are different. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion followed by a dissolution-precipitation process to form the outer one. Dynamic experiments at 70C and corrosion kinetics measurements have demonstrated that the oxide growth process is controlled by a diffusion step associated to a dissolution/precipitation process. A corrosion mechanim of the AlFeNi alloy in aqueous media has been proposed. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Optimized high temperature oxidation and cleaning at BUGEY 3

    No full text
    International audienceAs a part of the EDF Source Term Reduction project, an experimental procedure was carried out at BUGEY 3 further to the steam generator replacement. This innovative procedure consists in theory in two complementary phases /1/: Phase 1: a SG tubes optimized oxidation performed during pre-critical hot functional tests (basic and reducing chemistry) aims to generate an as protective as possible inner oxide layer allowing to reduce the later nickel release, Phase 2: a cleaning procedure of the primary circuit performed under acid and reducing chemical conditioning at 170°C intends to dissolve and eliminate the outer oxide layer by a simultaneous purification. The objective of such a procedure is to reduce corrosion products inventory (mainly nickel) generated by the first SG tube oxidation during hot functional tests and first operation months by carrying out an appropriate cleaning procedure. Gains were expected not only on RCS and auxiliary systems contamination, dose rates and thus collective dose but also on next outages duration. The objective of this paper is to describe the process implementation at BUGEY 3: effective procedure put in place, monitoring program (chemistry and dose rate measurements, EMECC campaign) and firsts results

    The impact of steam generator replacement on PWR primary system contamination

    No full text
    International audienceThis paper analyses the impact of Steam Generator Replacement (SGR) on PWR primary circuit contamination. It presents a comparison of the activities deposited inside the primary system and released during refuelling outages after SGR with three different SG tube alloys (600, 690 and 800) and different SG tube manufacturing processes. A SGR has a great impact on the primary system contamination. After SGR, whatever the SG tube material is, the typical variations are the following: • The Co-58 contamination increases for 1 to 3 cycles, and then decreases to very low levels in some cases, mainly depending on the manufacturing process of the replacement SG tubes. • The Co-60 contamination tends to decrease on the primary coolant pipes and increases by a lower rate on the new SG tubes. This analysis highlights the importance on contamination levels after SGR of both the corrosion product deposits on the primary surfaces before SGR and the surface finish of the SG tubes related to their manufacturing process
    corecore