18,180 research outputs found

    Regeneration efficiency, shuttle heat loss and thermal conductivity in epoxy-composite annualr gap regenerators from 4K to 80K

    Get PDF
    A test apparatus designed to simulate a section of a Stirling cycle cryocooler was built. Measurements of regeneration efficiency, shuttle heat loss and thermal conductivity reported for several regenerator test sections. The test composites were epoxy glass, epoxy glass with lead particles, epoxy glass with activated charcoal and epoxy graphite. Losses measured for these materials were approximately the same. Losses are in good agreement with those calculated theoretically for an epoxy glass (C-10) composite. The implications of these results on cryocooler design are discussed

    A small helium liquifier which provides continuous cooling based on cycled isentropic expansion

    Get PDF
    This simple cryocooler provides a small reservoir of liquid helium at a stable temperature of 4.2K. It uses a novel adaptation of the Simon expansion cryocooler to provide continuous cooling. Operation is in a four stage cycle: (1) A closed vessel of helium under high pressure is cooled to 12K using a conventional Gifford-McMahon closed-cycle cryocooler. (2) The pressure is released adiabatically providing cooling to 4.2K. (3) Liquid helium is collected in a second, well insulated, vessel. (4) The first vessel is repressurized. The cycle time is 15-30 minutes. In this manner, a pool of liquid helium is continuously maintained in the second vessel, with a temperature stability of 0.03 degrees. The continuous cooling power available is 3mW. This design provides simplicity and reliability through the absence of any orifices or moving parts at cryogenic temperatures except for the conventional Gifford-McMahon cryocooler

    A Radio--Optical Reference Frame VIII. CCD observations from KPNO and CTIO: internal calibration and first results

    Full text link
    In this pilot investigation, precise optical positions in the FK5 system are presented for a set of 16 compact extragalactic radio sources, which will be part of the future radio--optical reference frame. The 0.9 m KPNO and CTIO telescopes equipped with 2K CCD's have been used for this project. The astrometric properties of these instruments are investigated in detail. New techniques of using wide field CCD observations for astrometry in general are developed. An internal precision of 5 to 31 mas in position per single exposure is found, depending on the brightness of the object. The tie to the primary optical reference system is established by photographic astrometry using dedicated astrographs on both hemispheres. An accuracy of ≈30\approx 30 mas per source is estimated for the multi--step reduction procedure when based on the future Hipparcos catalog, while the FK5--based positions suffer from system errors of 100 to 200 mas as compared to the radio positions. This work provides a contribution to the international effort to link the Hipparcos instrumental coordinate system to the quasi--inertial VLBI radio reference frame. Precise radio and optical astrometry of a large sample of compact extragalactic sources will also contribute to the astrophysics of these objects by comparing the respective centers of emission at the optical and radio wavelengths.Comment: AAS v.4 LaTeX, 2 parts on 1 file (main text + deluxetable), accepted by AJ, Dec.95, fig. with reprint

    A Compound model for the origin of Earth's water

    Full text link
    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which, local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water-delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using D/H ratio, finding possible relative contributions from each source, focusing on planets formed in the habitable zone. We find that the compound model play an important role by showing more advantage in the amount and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa

    Appropriating the Returns from Industrial Research and Development

    Get PDF
    macroeconomics, industrial research and development, patent law

    EarthN: A new Earth System Nitrogen Model

    Get PDF
    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and provides feedbacks on oxygen and nutrient cycles. To investigate the Earth system nitrogen cycle over geologic history, we have constructed a new nitrogen cycle model: EarthN. This model is driven by mantle cooling, links biologic nitrogen cycling to phosphate and oxygen, and incorporates geologic and biologic fluxes. Model output is consistent with large (2-4x) changes in atmospheric mass over time, typically indicating atmospheric drawdown and nitrogen sequestration into the mantle and continental crust. Critical controls on nitrogen distribution include mantle cooling history, weathering, and the total Bulk Silicate Earth+atmosphere nitrogen budget. Linking the nitrogen cycle to phosphorous and oxygen levels, instead of carbon as has been previously done, provides new and more dynamic insight into the history of nitrogen on the planet.Comment: 36 pages, 12 figure

    On the communication cost of entanglement transformations

    Get PDF
    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR pairs, and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462, 1999], requires a number of bits to be exchanged which is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of ``embezzling entanglement'' [W. van Dam and P. Hayden, quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations. In v3 some arguments are given in more detai

    A Computational Interpretation of Context-Free Expressions

    Full text link
    We phrase parsing with context-free expressions as a type inhabitation problem where values are parse trees and types are context-free expressions. We first show how containment among context-free and regular expressions can be reduced to a reachability problem by using a canonical representation of states. The proofs-as-programs principle yields a computational interpretation of the reachability problem in terms of a coercion that transforms the parse tree for a context-free expression into a parse tree for a regular expression. It also yields a partial coercion from regular parse trees to context-free ones. The partial coercion from the trivial language of all words to a context-free expression corresponds to a predictive parser for the expression
    • …
    corecore