18 research outputs found
Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid
Anthocyanins are being increasingly investigated for their neuroprotective and antineuroinflammatory effects; however, the overall bioavailability of many anthocyanins is relatively low. In contrast, phenolic acids, metabolites of many polyphenols, including anthocyanins, have been shown to accumulate in tissue at higher concentrations than those of parent compounds, suggesting that these metabolites may be the bioactive components of anthocyanin-rich diets. We examined the neuroprotective capacity of two common phenolic acids, 4-hydroxybenzoic acid (HBA) and protocatechuic acid (PCA), in primary cultures of cerebellar granule neurons. Both HBA and PCA are capable of mitigating oxidative stress induced by hydrogen peroxide, which is thought to contribute to neuronal cell death in neurodegeneration. Under conditions of nitrosative stress, which occur during inflammation in the central nervous system, only PCA was neuroprotective, despite similar structural characteristics between HBA and PCA. Intriguingly, this trend was reversed under conditions of excitotoxicity, in which only HBA was neuroprotective. Lastly, we explored the anti-inflammatory activity of these compounds in microglial cells stimulated with lipopolysaccharide. PCA was an effective anti-inflammatory agent, reducing nitric oxide production, while HBA had no effect. These data indicate that phenolic acids possess distinct neuroprotective and anti-inflammatory characteristics that could make them suitable for the treatment of neurodegeneration
Unsupervised Bayesian linear unmixing of gene expression microarrays
Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor
A Cystine-Rich Whey Supplement (Immunocal®) Provides Neuroprotection from Diverse Oxidative Stress-Inducing Agents In Vitro
Oxidative stress is a principal mechanism underlying the pathophysiology of neurodegeneration. Therefore, nutritional enhancement of endogenous antioxidant defenses may represent a viable treatment option. We investigated the neuroprotective properties of a unique whey protein supplement (Immunocal®) that provides an essential precursor (cystine) for synthesis of the endogenous antioxidant, glutathione (GSH). Primary cultures of rat cerebellar granule neurons (CGNs), NSC34 motor neuronal cells, or HT22 hippocampal cells were preincubated in medium containing Immunocal and then subsequently treated with agents known to induce oxidative stress. Immunocal protected CGNs against neurotoxicity induced by the Bcl-2 inhibitor, HA14-1, the nitric oxide donor, sodium nitroprusside, CuCl2, and AlCl3. Immunocal also significantly reduced NSC34 cell death due to either H2O2 or glutamate and mitigated toxicity in HT22 cells overexpressing β-amyloid1-42. The neuroprotective effects of Immunocal were blocked by inhibition of γ-glutamyl-cysteine ligase, demonstrating dependence on de novo GSH synthesis. These findings indicate that sustaining GSH with Immunocal significantly protects neurons against diverse inducers of oxidative stress. Thus, Immunocal is a nutritional supplement worthy of testing in preclinical animal models of neurodegeneration and in future clinical trials of patients afflicted by these diseases
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases
The 2-Oxoglutarate Carrier Is S-Nitrosylated in the Spinal Cord of G93A Mutant hSOD1 Mice Resulting in Disruption of Mitochondrial Glutathione Transport
Mitochondrial oxidative stress and dysfunction are strongly implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Glutathione (GSH) is an endogenous antioxidant that exists as distinct cytosolic and mitochondrial pools. The status of the mitochondrial GSH pool is reliant on transport from the cytosol through the 2-oxoglutarate carrier (OGC), an inner membrane anion carrier. We have previously reported that the outer mitochondrial membrane protein, Bcl-2, directly binds GSH and is a key regulator of OGC-dependent mitochondrial GSH transport. Here, we show that G93A mutant SOD1 (Cu, Zn-superoxide dismutase) reduces the binding of GSH to Bcl-2 and disrupts mitochondrial GSH uptake in vitro. In the G93A mutant hSOD1 mouse model of ALS, mitochondrial GSH is significantly depleted in spinal cord of end-stage mice. Finally, we show that OGC is heavily S-nitrosylated in the spinal cord of end-stage mice and consequently, the GSH uptake capacity of spinal cord mitochondria isolated from these mutant mice is significantly diminished. Collectively, these findings suggest that spinal cord GSH depletion, particularly at the level of the mitochondria, plays a significant role in ALS pathogenesis induced by mutant SOD1. Furthermore, the depletion of mitochondrial GSH in the G93A mutant hSOD1 mouse model may be caused by the S-nitrosylation of OGC and the capacity of mutant SOD1 to disrupt the Bcl-2/GSH interaction, resulting in a disruption of mitochondrial GSH transport
Procyanidin B2 Protects Neurons from Oxidative, Nitrosative, and Excitotoxic Stress
The aberrant generation of oxygen and nitrogen free radicals can cause severe damage to key cellular components, resulting in cell apoptosis. Similarly, excitotoxicity leads to protease activation and mitochondrial dysfunction, which subsequently causes cell death. Each of these factors play critical roles in the neuronal cell death underlying various neurodegenerative diseases. Procyanidin B2 (PB2) is a naturally occurring polyphenolic compound found in high concentrations in cocoa, apples, and grapes. Here, we examine the neuroprotective effects of PB2 in primary cultures of rat cerebellar granule neurons (CGNs) exposed to various stressors. CGNs were pre-incubated with PB2 and then neuronal stress was induced as described below. Mitochondrial oxidative stress was triggered with HA14-1, an inhibitor of the pro-survival Bcl-2 protein which induces glutathione-sensitive apoptosis. Glutamate and glycine were used to induce excitotoxicity. Sodium nitroprusside, a nitric oxide generating compound, was used to induce nitrosative stress. We observed significant dose-dependent protection of CGNs with PB2 for all of the above insults, with the greatest neuroprotective effect being observed under conditions of nitrosative stress. Intriguingly, the neuroprotective effect of PB2 against nitric oxide was superoxide-dependent, as we have recently shown for other catechol antioxidants. Finally, we induced neuronal stress through the removal of depolarizing extracellular potassium and serum (5K conditions), which is a classical model of intrinsic apoptosis in CGNs. PB2 did not display any significant protection against 5K-induced apoptosis at any concentration tested. We conclude that PB2 offers neuronal protection principally as an antioxidant by scavenging reactive oxygen and nitrogen species instead of through modulation of pro-survival cell signaling pathways. These findings suggest that PB2 may be an effective neuroprotective agent for the treatment of neurodegenerative disorders
Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid
Anthocyanins are being increasingly investigated for their neuroprotective and antineuroinflammatory effects; however, the overall bioavailability of many anthocyanins is relatively low. In contrast, phenolic acids, metabolites of many polyphenols, including anthocyanins, have been shown to accumulate in tissue at higher concentrations than those of parent compounds, suggesting that these metabolites may be the bioactive components of anthocyanin-rich diets. We examined the neuroprotective capacity of two common phenolic acids, 4-hydroxybenzoic acid (HBA) and protocatechuic acid (PCA), in primary cultures of cerebellar granule neurons. Both HBA and PCA are capable of mitigating oxidative stress induced by hydrogen peroxide, which is thought to contribute to neuronal cell death in neurodegeneration. Under conditions of nitrosative stress, which occur during inflammation in the central nervous system, only PCA was neuroprotective, despite similar structural characteristics between HBA and PCA. Intriguingly, this trend was reversed under conditions of excitotoxicity, in which only HBA was neuroprotective. Lastly, we explored the anti-inflammatory activity of these compounds in microglial cells stimulated with lipopolysaccharide. PCA was an effective anti-inflammatory agent, reducing nitric oxide production, while HBA had no effect. These data indicate that phenolic acids possess distinct neuroprotective and anti-inflammatory characteristics that could make them suitable for the treatment of neurodegeneration
An Anthocyanin-enriched Extract from Strawberries Delays Disease Onset and Extends Survival in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the death of motor neurons in the brain, brain stem, and spinal cord. Several processes such as oxidative stress, neuroinflammation, and neuronal apoptosis, contribute to disease progression. Anthocyanins are flavonoid compounds derived from fruits and vegetables that possess antioxidant, anti-inflammatory, and anti-apoptotic abilities. Thus, these unique compounds may provide therapeutic benefit for the treatment of ALS.
Methods: We used the G93A mutant human SOD1 (hSOD1G93A) mouse model of ALS to assess the effects of an anthocyanin-enriched extract from strawberries (SAE) on disease onset and progression. Mice were administered SAE orally beginning at 60 days of age until end-stage such that mice received 2 mg/kg/day of the extract\u27s primary anthocyanin constituent. Clinical indices of disease were assessed until mice were sacrificed at end-stage. Histopathological indices of disease progression were also evaluated at 105 days of age.
Results: hSOD1G93A mice supplemented with SAE experienced a marked (∼17 day) delay in disease onset and a statistically significant (∼11 day) extension in survival in comparison to their untreated mutant counterparts. Additionally, SAE-treated hSOD1G93A mice displayed significantly preserved grip strength throughout disease progression. Histopathological analysis demonstrated that SAE supplementation significantly reduced astrogliosis in spinal cord, and preserved neuromuscular junctions (NMJs) in gastrocnemius muscle.
Discussion: These data are the first to demonstrate that anthocyanins have significant potential as therapeutic agents in a preclinical model of ALS due to their ability to reduce astrogliosis in spinal cord and preserve NMJ integrity and muscle function. Therefore, further study of these compounds is warranted in additional preclinical models of ALS and other neurodegenerative diseases
A Cystine-Rich Whey Supplement (Immunocal®) Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
Depletion of the endogenous antioxidant, glutathione (GSH), underlies progression of the devastating neurodegenerative disease, amyotrophic lateral sclerosis (ALS). Thus, strategies aimed at elevating GSH may yield new therapeutics for ALS. Here, we investigated the effects of a unique non-denatured whey protein supplement, Immunocal®, in the transgenic Gly position 93 to Ala (G93A) mutant hSOD1 (hSOD1G93A) mouse model of ALS. Immunocal® is rich in the GSH precursor, cystine, and is therefore capable of bolstering GSH content. Transgenic hSOD1G93A mice receiving Immunocal® displayed a significant delay in disease onset compared to untreated hSOD1G93A controls. Additionally, Immunocal® treatment significantly decreased the rate of decline in grip strength and prevented disease-associated reductions in whole blood and spinal cord tissue GSH levels in end-stage hSOD1G93A mice. However, Immunocal® did not extend survival, likely due to its inability to preserve the mitochondrial GSH pool in spinal cord. Combination treatment with Immunocal® and the anti-glutamatergic compound, riluzole, delayed disease onset and extended survival in hSOD1G93A mice. These findings demonstrate that sustaining tissue GSH with Immunocal® only modestly delays disease onset and slows the loss of skeletal muscle strength in hSOD1G93A mice. Moreover, the inability of Immunocal® to rescue mitochondrial GSH in spinal cord provides a possible mechanism for its lack of effect on survival and is a limiting factor in the potential utility of this supplement as a therapeutic for ALS