200 research outputs found

    Priming of Anti-tumor Immune Mechanisms by Radiotherapy Is Augmented by Inhibition of Heat Shock Protein 90

    Get PDF
    Radiotherapy is an essential part of multi-modal cancer therapy. Nevertheless, for certain cancer entities such as colorectal cancer (CRC) the indications of radiotherapy are limited due to anatomical peculiarities and high radiosensitivity of the surrounding normal tissue. The development of molecularly targeted, combined modality approaches may help to overcome these limitations. Preferably, such strategies should not only enhance radiation-induced tumor cell killing and the abrogation of tumor cell clonogenicity, but should also support the stimulation of anti-tumor immune mechanisms – a phenomenon which moved into the center of interest of preclinical and clinical research in radiation oncology within the last decade. The present study focuses on inhibition of heat shock protein 90 (HSP90) whose combination with radiotherapy has previously been reported to exhibit convincing therapeutic synergism in different preclinical cancer models. By employing in vitro and in vivo analyses, we examined if this therapeutic synergism also applies to the priming of anti-tumor immune mechanisms in model systems of CRC. Our results indicate that the combination of HSP90 inhibitor treatment and ionizing irradiation induced apoptosis in colorectal cancer cells with accelerated transit into secondary necrosis in a hyperactive Kras-dependent manner. During secondary necrosis, dying cancer cells released different classes of damage-associated molecular patterns (DAMPs) that stimulated migration and recruitment of monocytic cells in vitro and in vivo. Additionally, these dying cancer cell-derived DAMPs enforced the differentiation of a monocyte-derived antigen presenting cell (APC) phenotype which potently triggered the priming of allogeneic T cell responses in vitro. In summary, HSP90 inhibition – apart from its radiosensitizing potential – obviously enables and supports the initial steps of anti-tumor immune priming upon radiotherapy and thus represents a promising partner for combined modality approaches. The therapeutic performance of such strategies requires further in-depth analyses, especially for but not only limited to CRC

    Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond

    Get PDF
    Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    Translating instructions into function by nucleic acid programmed self-assembly

    No full text
    The predictable nature of nucleic acid hybridization offers a simple platform to program assemblies with emerging function. This review will highlight some examples from our laboratory towards the use of this concept in chemical biology. These developments capitalize on peptide nucleic acids (PNAs), a functional analogue of natural oligonucleotides to program assemblies. In the first example, hybridization is used to organize mixtures of molecules tagged with PNAs into a microarray format; in the second example, the PNA tags are used to program the dimerization of ligands onto a nucleic acid template which translates into enhanced affinity for a biomolecule; in the third one, hybridization is used to program a reaction by aligning reactive functional groups and translated into a fluorescent signal. While these examples are only a prelude in translating instructions into a function, we hope that they can be the basis of more complex network and inspire further developments in the broader context of system chemistry

    Bioorthogonal Chemistry: Editorial

    No full text

    Nucleic Acid-programmed Assemblies: Translating Instruction into Function in Chemical Biology

    Get PDF
    The predictability of nucleic acid hybridization offers an attractive platform to program the assembly of tagged ligands or reactants. Hybridization can be used to display multiple ligands in order to gain affinity and/or selectivity through the cooperative interaction of each ligand. Additionally, hybridization of tagged reagents increases their effective concentration and accelerates reactions. In both cases, an oligonucleotide directs an assembly to yield a functional output in the form of enhanced binding, inhibition, or reaction; for example, a reaction can be used to unmask a fluorophore or a bioactive molecule. This review provides an account of our research in this area as well as future directions

    DNA display of PNA-tagged ligands: A versatile strategy to screen libraries and control geometry of multidentate ligands

    Get PDF
    Over the past decade, several technologies have emerged to access nucleic acid-tagged libraries and select the fittest compound within such libraries. This perspective focuses on recent development with PNA-tagged small molecules displayed on DNA templates for screening purposes and to probe the optimal geometry in multivalent interactions
    • …
    corecore