973 research outputs found

    Modulation of swimming in the gastropod Melibe leonina by nitric oxide

    Get PDF
    Nitric oxide (NO) is a gaseous intercellular messenger produced by the enzyme nitric oxide synthase. It has been implicated as a neuromodulator in several groups of animals, including gastropods, crustaceans and mammals. In this study, we investigated the effects of NO on the swim motor program produced by isolated brains and by semi-intact preparations of the nudibranch Melibe leonina. The NO donors sodium nitroprusside (SNP, 1 mmol l–1) and S-nitroso-N-acetylpenicillamine (SNAP, 1 mmol l–1) both had a marked effect on the swim motor program expressed in isolated brains, causing an increase in the period of the swim cycle and a more erratic swim rhythm. In semi-intact preparations, the effect of NO donors was manifested as a significant decrease in the rate of actual swimming. An NO scavenger, reduced oxyhemoglobin, eliminated the effects of NO donors on isolated brains, supporting the assumption that the changes in swimming induced by donors were actually due to NO. The cGMP analogue 8-bromoguanosine 3′,5′-cyclic monophosphate (1 mmol l–1) produced effects that mimicked those of NO donors, suggesting that NO is working via a cGMP-dependent mechanism. These results, in combination with previous histological studies indicating the endogenous presence of nitric oxide synthase, suggest that NO is used in the central nervous system of Melibe leonina to modulate swimming

    Gills as Possible Accessory Circulatory Pumps in Limulus polyphemus

    Get PDF
    Heart electrical activity (ECGs), gill closer muscle potentials (EMGs), and blood pressures in the heart and the branchiocardiac canals, were measured in adult horseshoe crabs (Limulus polyphemus) during various activities. During ventilation, hyperventilation, and swimming, large transient increases in pressures (10-35 cm H2O) occur in the branchiocardiac canals, which carry blood from the gills to the heart. These pulses of positive pressure are related to, and apparently caused by, gill plate closing. During quiescent periods, with no ventilatory activity, there are no pressure pulses in the canals, but the pressure is still greater than zero. We found covariation of heart and ventilation rates during intermittent ventilation, hyperventilation, gill cleaning, and swimming, as well as evidence of transient periods of phasic coordination. The heart appears to be weakly entrained to the gill rhythm by phasic cardioregulatory nerve input. The preferred phase of heartbeats, with respect to gill rhythm, was 0.5, or 180 degrees out of phase. In some animals, intra-cardiac pressures were enhanced when the heart and gill rhythms were entrained. We suggest that rhythmic movements of the gill plates enhance the flow of low pressure blood returning from the body to the heart. Thus, ventilatory appendage movements may constitute an accessory blood pumping mechanism in Limulus

    Neural Correlates of Swimming Behavior in Melibe leonina

    Get PDF
    The nudibranch Melibe leonina swims by rhythmically bending from side to side at a frequency of 1 cycle every 2–4 s. The objective of this study was to locate putative swim motoneurons (pSMNs) that drive these lateral flexions and determine if swimming in this species is produced by a swim central pattern generator (sCPG). In the first set of experiments, intracellular recordings were obtained from pSMNs in semi-intact, swimming animals. About 10–14 pSMNs were identified on the dorsal surface of each pedal ganglion and 4–7 on the ventral side. In general, the pSMNs in a given pedal ganglion fired synchronously and caused the animal to flex in that direction, whereas the pSMNs in the opposite pedal ganglion fired in anti-phase. When swimming stopped, so did rhythmic pSMN bursting; when swimming commenced, pSMNs resumed bursting. In the second series of experiments, intracellular recordings were obtained from pSMNs in isolated brains that spontaneously expressed the swim motor program. The pattern of activity recorded from pSMNs in isolated brains was very similar to the bursting pattern obtained from the same pSMNs in semi-intact animals, indicating that the sCPG can produce the swim rhythm in the absence of sensory feedback. Exposing the brain to light or cutting the pedal-pedal connectives inhibited fictive swimming in the isolated brain. The pSMNs do not appear to participate in the sCPG. Rather, they received rhythmic excitatory and inhibitory synaptic input from interneurons that probably comprise the sCPG circuit

    Circular No. 6 - Measurement and Distribution of Irrigation Water

    Get PDF
    This circular has been prepared to meet the more urgent and immediate needs of the water user. The complications which usually arise in water measurement have been eliminated to such an extent that anyone who will follow the few simple instructions outlined in the following pages can learn to measure the flow of irrigation streams under ordinary conditions

    Circadian Rhythms of Crawling and Swimming in the Nudibranch Mollusc Melibe leonina

    Get PDF
    Daily rhythms of activity driven by circadian clocks are expressed by many organisms, including molluscs. We initiated this study, with the nudibranch Melibe leonina, with four goals in mind: (1) determine which behaviors are expressed with a daily rhythm; (2) investigate which of these rhythmic behaviors are controlled by a circadian clock; (3) determine if a circadian clock is associated with the eyes or optic ganglia of Melibe, as it is in several other gastropods; and (4) test the hypothesis that Melibe can use extraocular photoreceptors to synchronize its daily rhythms to natural light-dark cycles. To address these goals, we analyzed the behavior of 55 animals exposed to either artificial or natural light-dark cycles, followed by constant darkness. We also repeated this experiment using 10 animals that had their eyes removed. Individuals did not express daily rhythms of feeding, but they swam and crawled more at night. This pattern of locomotion persisted in constant darkness, indicating the presence of a circadian clock. Eyeless animals also expressed a daily rhythm of locomotion, with more locomotion at night. The fact that eyeless animals synchronized their locomotion to the light-dark cycle suggests that they can detect light using extraocular photoreceptors. However, in constant darkness, these rhythms deteriorated, suggesting that the clock neurons that influence locomotion may be located in, or near, the eyes. Thus, locomotion in Melibe appears to be influenced by both ocular and extraocular photoreceptors, although the former appear to have a greater influence on the expression of circadian rhythms

    Detection of Salinity by the Lobster, Homarus americanus

    Get PDF
    Changes in the heart rates of lobsters (Homarus americanus) were used as an indicator that the animals were capable of sensing a reduction in the salinity of the ambient seawater. The typical response to a gradual (1 to 2 ppt/min) reduction in salinity consisted of a rapid increase in heart rate at a mean threshold of 26.6 ± 0.7 ppt, followed by a reduction in heart rate when the salinity reached 22.1 ± 0.5 ppt. Animals with lesioned cardioregulatory nerves did not exhibit a cardiac response to changes in salinity. A cardiac response was elicited from lobsters exposed to isotonic chloride-free salines but not to isotonic sodium-, magnesium- or calcium-free salines. There was little change in the blood osmolarity of lobsters when bradycardia occurred, suggesting that the receptors involved are external. Furthermore, lobsters without antennae, antennules, or legs showed typical cardiac responses to low salinity, indicating the receptors are not located in these areas. Lobsters exposed to reductions in the salinity of the ambient seawater while both branchial chambers were perfused with full-strength seawater did not display a cardiac response until the external salinity reached 21.6 ± 1.8 ppt. In contrast, when their branchial chambers were exposed to reductions in salinity while the external salinity was maintained at normal levels, changes in heart rate were rapidly elicited in response to very small reductions in salinity (down to 29.5 ± 0.9 ppt in the branchial chamber and 31.5 ± 0.3 ppt externally). We conclude that the primary receptors responsible for detecting reductions in salinity in H. americanus are located within or near the branchial chambers and are primarily sensitive to chloride ions

    Bulletin No. 182 - The Net Duty of Water in Sevier Valley

    Get PDF
    The Sevier River is one of the most important sources of irrigation water in Utah. It rises in two main branches. The south fork rises in Kane County and flows almost due north to Junction in Piute County, where it joins the east fork, which rises partly in Garfield County and partly in Sevier County. The Garfield County branch of the east fork flows north, and the Sevier County Branch flows south to Coyote where the two tributaries join and flow westward into Junction. From Junction, the river flows northward past Marysvale, Sevier, Richfield, Salina, Gunnison, and Mills, where it takes a westerly course to Leamington and from there a southwesterly course past Delta, Oasis, and Deseret, and into the Sevier Lake, part of which lies in Millard and part in Beaver County

    The influence of olfactory and tactile stimuli on the feeding behavior of Melibe leonina (Gould, 1852) (Opisthobranchia: Dendronotacea)

    Get PDF
    The nudibranch Melibe leonine feeds using the rhythmic movements of its large oral hood to capture small crustaceans that are present in the water column. The frequency of these feeding movements, or hood closures, is proportional to the concentration of available prey. The purpose of this study was to determine what qualities of prey cause the rate of these feeding movements to change. Animals were observed during exposure to the following treatments: (1) filtered seawater; (2) Artemia-conditioned seawater (smell); (3) small particles in seawater; (4) particles soaked in Artemia-conditioned seawater; (5) frozen Artemia and; (6) live Artemia. Both conditioned water and particles caused appetitive behavior (orientation of the oral hood) and a significant increase in the frequency of hood closures. This incrase in rate had a rapid onset and was maintained throughout the duration of the 20-min test period. The major difference between the effects of the two stimuli was that smell alone led to incomplete feeding cycles while particle treatments yielded normal feeding behavior. When applied together these stimuli produced a larger response than either one did alone. However, no combination of stimuli was as effective as live prey. We conclude that both tactile and chemical cues are sufficient to elicit an increase in the feeding movements of Melibe leonine, but some additional stimulus provided by live prey, such as vibrations, may play an important role as well. The information provided by these stimuli helps initiate appetitive and early aspects of the consummartory phases of feeding, and also influences full expression of the rhythmic feeding motor program

    Discovery of low-metallicity stars in the central parsec of the Milky Way

    Full text link
    We present a metallicity analysis of 83 late-type giants within the central 1 pc of the Milky Way. K-band spectroscopy of these stars were obtained with the medium-spectral resolution integral-field spectrograph NIFS on Gemini North using laser-guide star adaptive optics. Using spectral template fitting with the MARCS synthetic spectral grid, we find that there is large variation in metallicity, with stars ranging from [M/H] << -1.0 to above solar metallicity. About 6\% of the stars have [M/H] << -0.5. This result is in contrast to previous observations, with smaller samples, that show stars at the Galactic center have approximately solar metallicity with only small variations. Our current measurement uncertainties are dominated by systematics in the model, especially at [M/H] >> 0, where there are stellar lines not represented in the model. However, the conclusion that there are low metallicity stars, as well as large variations in metallicity is robust. The metallicity may be an indicator of the origin of these stars. The low-metallicity population is consistent with that of globular clusters in the Milky Way, but their small fraction likely means that globular cluster infall is not the dominant mechanism for forming the Milky Way nuclear star cluster. The majority of stars are at or above solar metallicity, which suggests they were formed closer to the Galactic center or from the disk. In addition, our results indicate that it will be important for star formation history analyses using red giants at the Galactic center to consider the effect of varying metallicity.Comment: 11 pages, 10 figures, ApJ Accepte
    • …
    corecore