130 research outputs found
Energy dissipation and ion heating at the heliospheric termination shock
The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index gamma used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share ( approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock
Particle Energization in an Expanding Magnetized Relativistic Plasma
Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the
relativistic expansion of a magnetized collisionless plasma into a vacuum, we
report a new mechanism in which the magnetic energy is efficiently converted
into the directed kinetic energy of a small fraction of surface particles. We
study this mechanism for both electron-positron and electron-ion (mi/me=100, me
is the electron rest mass) plasmas. For the electron-positron case the pairs
can be accelerated to ultra-relativistic energies. For electron-ion plasmas
most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical
Review Letter
Recommended from our members
Hybrid modeling of the formation and structure of thin current sheets in the magnetotail
Hybrid simulations are used to investigate the formation of a thin current sheet inside the plasma sheet of a magnetotail-like configuration. The initial equilibrium is subjected to a driving electric field qualitatively similar to what would be expected from solar wind driving. As a result, we find the formation of a raw current sheet, with a thickness of approximately the ion inertial length. The current density inside the current sheet region is supplied largely by the electrons. Ion acceleration in the cross-tail direction is absent due since the driving electric field fails to penetrate into the equatorial region
The moving boundary problem in the presence of a dipole magnetic field
An exact analytic solution is obtained for a uniformly expanding, neutral,
infinitely conducting plasma sphere in an external dipole magnetic field. The
electrodynamical aspects related to the radiation and transformation of energy
were considered as well. The results obtained can be used in analyzing the
recent experimental and simulation data.Comment: 17 pages, 1 figure, Submitted to J. Phys. A, Math. and Genera
Recommended from our members
Dusty plasmas
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities
Recommended from our members
Simulation of dust-acoustic waves
The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter = {Lambda} = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit)
- …