59 research outputs found

    Reverse transcriptases can clamp together nucleic acids strands with two complementary bases at their 3′-termini for initiating DNA synthesis

    Get PDF
    We present evidence that the reverse transcriptase (RT) of human immunodeficiency virus type-1 stabilizes in vitro very short (2-nt) duplexes of 3′-overhangs of the primer strand that are annealed to complementary dinucleotides tails of DNA or RNA template strands, provided that these sequences contain at least one C or G. This RT-induced strand ‘clamping’ activity promotes RT-directed DNA synthesis. This function is achieved only when the functional template strand is adjacent to a second DNA or RNA segment, annealed upstream to most of the primer (without gaps). The combined clamp/polymerase activity is typical to RTs, as it was found in different RTs from diverse retroviral groups, whereas cellular DNA-polymerases (devoid of 3′→5′ exonucleolytic activity) showed no clamp activity. The clamp-associated DNA-binding activity is markedly stabilized by dGTP, even when dGTP is not incorporated into the nascent DNA strand. The hereby-described function can help RTs in bridging over nicks in the copied RNA or DNA templates, encountered during reverse transcription. Moreover, the template-independent blunt-end synthesis of RTs can allow strand transfers onto compatible acceptor strands while synthesizing DNA. These RT properties can shed light on potentially-new roles of RTs in the reverse-transcription process and define new targets for anti-retroviral drugs

    Interactions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template

    Get PDF
    Background: Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTPNRTNP/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnetNRTNP/T complex). Methods and Results: UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTPNRTNP/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnetNRTNP/T complex (i.e., in the pre-translocation position). Conclusions: For +1 dNTPNRTNP/T and foscarnetNRTNP/T stable complexes, tight interactions were observed between RT an

    Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1

    Get PDF
    Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the hydrolysis of phosphodiester linkages between a DNA 3′ phosphate and a tyrosine residue as well as a variety of other DNA 3′ substituents, and has been implicated in the repair of covalent complexes involving eukaryotic type IB topoisomerases. To better understand the substrate features that are recognized by TDP1, the size of either the DNA or protein component of the substrate was varied. Competition experiments and gel shift analyses comparing a series of substrates with DNA lengths increasing from 6 to 28 nucleotides indicated that, contrary to predictions based on the crystal structure of the protein, the apparent affinity for the substrate increased as the DNA length was increased over the entire range tested. It has previously been found that a substrate containing the full-length native form of human topoisomerase I protein is not cleaved by TDP1. Protein-oligonucleotide complexes containing either a 53 or 108 amino acid long topoisomerase I-derived peptide were efficiently cleaved by TDP1, but like the full length protein, a substrate containing a 333 amino acid topoisomerase I fragment was resistant to cleavage. Consistent with these results, evidence is presented that processing by the proteasome is required for TDP1 cleavage in vivo
    corecore