12 research outputs found

    Before the Peace: Ceasefire Durability in Ethnic Civil Wars

    Get PDF
    Why do some ceasefires last for days, while others last for months or years? Previous research on ceasefires has not directly considered the question of ceasefire durability, or has focused solely on the dynamics of ceasefire durability in interstate war. In order to address these knowledge gaps, this study explores the question of ceasefire durability in the context of ethnic civil wars. It is hypothesized that ceasefire durability is related to belligerents’ territorial satisfaction, relative power, and actor cohesion. Analyzing two ceasefires from the Bosnian civil war, the study finds that durability is a function of the interaction between territorial satisfaction and the presence of a mutually hurting stalemate. This interaction produces four types of ceasefires: (a) durable, with high satisfaction and a mutually hurting stalemate; (b) variable, with high satisfaction and no mutually hurting stalemate; (c) dependent, with low satisfaction and a mutually hurting stalemate; and (d) weak, with low satisfaction and no mutually hurting stalemate. This typology helps to clarify policy and timing choices for military officials, humanitarian organizations, and peace negotiators

    A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database

    Get PDF
    This work explores the implementation of an adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed pseudo-spectral algorithm that is based on a direct application of the Smolyak sparse grid formula and that allows the use of arbitrary admissible sparse grids. The adaptive algorithm is tested using an existing simulation database of the oceanic response to Hurricane Ivan in the Gulf of Mexico. The a priori tests demonstrate that sparse and adaptive pseudo-spectral constructions lead to substantial savings over isotropic sparse sampling in the present setting.United States. Office of Naval Research (award N00014-101-0498)United States. Dept. of Energy. Office of Advanced Scientific Computing Research (award numbers DE-SC0007020, DE-SC0008789, and DE-SC0007099)Gulf of Mexico Research Initiative (contract numbers SA1207GOMRI005 (CARTHE) and SA12GOMRI008 (DEEP-C)

    Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification

    No full text
    <p>Polynomial chaos expansions provide an efficient and robust framework to analyze and quantify uncertainty in computational models. This dissertation explores the use of adaptive sparse grids to reduce the computational cost of determining a polynomial model surrogate while examining and implementing new adaptive techniques.</p><p>Determination of chaos coefficients using traditional tensor product quadrature suffers the so-called curse of dimensionality, where the number of model evaluations scales exponentially with dimension. Previous work used a sparse Smolyak quadrature to temper this dimensional scaling, and was applied successfully to an expensive Ocean General Circulation Model, HYCOM during the September 2004 passing of Hurricane Ivan through the Gulf of Mexico. Results from this investigation suggested that adaptivity could yield great gains in efficiency. However, efforts at adaptivity are hampered by quadrature accuracy requirements.</p><p>We explore the implementation of a novel adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed adaptive pseudo-spectral projection (aPSP) algorithm that is based on a direct application of Smolyak's sparse grid formula, and that allows for the use of arbitrary admissible sparse grids. Such a construction ameliorates the severe restrictions posed by insufficient quadrature accuracy. The adaptive algorithm is tested using an existing simulation database of the HYCOM model during Hurricane Ivan. The {\it a priori} tests demonstrate that sparse and adaptive pseudo-spectral constructions lead to substantial savings over isotropic sparse sampling.</p><p>In order to provide a finer degree of resolution control along two distinct subsets of model parameters, we investigate two methods to build polynomial approximations. The two approaches are based with pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids. The control of the error along different subsets of parameters may be needed in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid pseudo-spectral projection is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, adaptive PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. </p><p>In order to increase efficiency even further, a subsampling technique is developed to allow for local adaptivity within the aPSP algorithm. The local refinement is achieved by exploiting the hierarchical nature of nested quadrature grids to determine regions of estimated convergence. In order to achieve global representations with local refinement, synthesized model data from a lower order projection is used for the final projection. The final subsampled grid was also tested with two more robust, sparse projection techniques including compressed sensing and hybrid least-angle-regression. These methods are evaluated on two sample test functions and then as an {\it a priori} analysis of the HYCOM simulations and the shock-tube ignition model investigated earlier. Small but non-trivial efficiency gains were found in some cases and in others, a large reduction in model evaluations with only a small loss of model fidelity was realized. Further extensions and capabilities are recommended for future investigations.</p>Dissertatio

    Quantifying initial and wind forcing uncertainties in the Gulf of Mexico

    No full text
    This study aims at analyzing the combined impact of uncertainties in initial conditions and wind forcing fields in ocean general circulation models (OGCM) using polynomial chaos (PC) expansions. Empirical orthogonal functions (EOF) are used to formulate both spatial perturbations to initial conditions and space-time wind forcing perturbations, namely in the form of a superposition of modal components with uniformly distributed random amplitudes. The forward deterministic HYbrid Coordinate Ocean Model (HYCOM) is used to propagate input uncertainties in the Gulf of Mexico (GoM) in spring 2010, during the Deepwater Horizon oil spill, and to generate the ensemble of model realizations based on which PC surrogate models are constructed for both localized and field quantities of interest (QoIs), focusing specifically on sea surface height (SSH) and mixed layer depth (MLD). These PC surrogate models are constructed using basis pursuit denoising methodology, and their performance is assessed through various statistical measures. A global sensitivity analysis is then performed to quantify the impact of individual modes as well as their interactions. It shows that the local SSH at the edge of the GoM main current—the Loop Current—is mostly sensitive to perturbations of the initial conditions affecting the current front, whereas the local MLD in the area of the Deepwater Horizon oil spill is more sensitive to wind forcing perturbations. At the basin scale, the SSH in the deep GoM is mostly sensitive to initial condition perturbations, while over the shelf it is sensitive to wind forcing perturbations. On the other hand, the basin MLD is almost exclusively sensitive to wind perturbations. For both quantities, the two sources of uncertainty have limited interactions. Finally, the computations indicate that whereas local quantities can exhibit complex behavior that necessitates a large number of realizations, the modal analysis of field sensitivities can be suitably achieved with a moderate size ensemble

    Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach

    No full text
    Polynomial chaos (PC) expansions are used to propagate parametric uncertainties in ocean global circulation model. The computations focus on short-time, high-resolution simulations of the Gulf of Mexico, using the hybrid coordinate ocean model, with wind stresses corresponding to hurricane Ivan. A sparse quadrature approach is used to determine the PC coefficients which provides a detailed representation of the stochastic model response. The quality of the PC representation is first examined through a systematic refinement of the number of resolution levels. The PC representation of the stochastic model response is then utilized to compute distributions of quantities of interest (QoIs) and to analyze the local and global sensitivity of these QoIs to uncertain parameters. Conclusions are finally drawn regarding limitations of local perturbations and variance-based assessment and concerning potential application of the present methodology to inverse problems and to uncertainty management

    Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi

    No full text
    Abstract The authors introduce a three-parameter characterization of the wind speed dependence of the drag coefficient and apply a Bayesian formalism to infer values for these parameters from airborne expendable bathythermograph (AXBT) temperature data obtained during Typhoon Fanapi. One parameter is a multiplicative factor that amplifies or attenuates the drag coefficient for all wind speeds, the second is the maximum wind speed at which drag coefficient saturation occurs, and the third is the drag coefficient's rate of change with increasing wind speed after saturation. Bayesian inference provides optimal estimates of the parameters as well as a non-Gaussian probability distribution characterizing the uncertainty of these estimates. The efficiency of this approach stems from the use of adaptive polynomial expansions to build an inexpensive surrogate for the high-resolution numerical model that couples simulated winds to the oceanic temperature data, dramatically reducing the computational burden of the Markov chain Monte Carlo sampling. These results indicate that the most likely values for the drag coefficient saturation and the corresponding wind speed are about 2.3 × 10−3 and 34 m s−1, respectively; the data were not informative regarding the drag coefficient behavior at higher wind speeds

    A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database

    No full text
    This work explores the implementation of an adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed pseudo-spectral algorithm that is based on a direct application of the Smolyak sparse grid formula and that allows the use of arbitrary admissible sparse grids. The adaptive algorithm is tested using an existing simulation database of the oceanic response to Hurricane Ivan in the Gulf of Mexico. The a priori tests demonstrate that sparse and adaptive pseudo-spectral constructions lead to substantial savings over isotropic sparse sampling in the present setting

    The genetics of alcohol dependence

    No full text
    corecore