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Abstract This work explores the implementation of an
adaptive strategy to design sparse ensembles of oceanic
simulations suitable for constructing polynomial chaos
surrogates. We use a recently developed pseudo-spectral
algorithm that is based on a direct application of the
Smolyak sparse grid formula and that allows the use of
arbitrary admissible sparse grids. The adaptive algorithm
is tested using an existing simulation database of the
oceanic response to Hurricane Ivan in the Gulf of Mex-
ico. The a priori tests demonstrate that sparse and adaptive
pseudo-spectral constructions lead to substantial savings
over isotropic sparse sampling in the present setting.
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1 Introduction

Polynomial chaos (PC) methods are series-based
approaches developed in recent years to quantify the
uncertainties in the output of numerical simulations due to
uncertainties in their input data and to explicitly represent
the dependence of specific quantities of interests (QoIs)
on this uncertain data (see [1] and references therein). One
of the main advantages of such representations is that the
response of a highly complex, computationally expensive
model to random inputs can be reasonably well represented
by a simple functional form. The PC representation can
then be used as a surrogate for the full model, thus enabling
efficient sampling, e.g., for the purpose of inference [2–4]
or sensitivity analysis [1, 5, 6]. Recent applications of PC
methods to oceanic simulations can be found in [7, 8]
and [9].

There are two traditional methods to construct PC repre-
sentations. The so-called intrusive method [1, 10] is based
on injecting the polynomial expansion into the model equa-
tions and on applying a Galerkin-type formalism to derive
model equations for the unknown coefficients. In contrast,
nonintrusive methods rely on individual model realizations,
i.e., deterministic runs corresponding to particular (fixed)
values of the random inputs, to create the desired PC rep-
resentations of selected QoIs. One of the advantages of the
nonintrusive technique in the context of complex models is
that it avoids the need to modify existing or legacy codes.

In this work, we shall specifically focus on a particu-
lar class of nonintrusive methods, namely one relying on
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spectral projection methodology [1]. In this approach, deter-
mination of PC coefficients of a specific QoI amounts to
performing a multidimensional quadrature. Unfortunately,
traditional quadrature approaches suffer the so-called curse
of dimensionality, whereby the number of realizations
scale exponentially with the number of dimensions. Sparse
quadratures [11, 12] provide one avenue to mitigate this
high computational cost.

In prior work [8], we relied on a classical Smolyak sparse
grid tensorization [13] to study the Hybrid Coordinate
Ocean Model (HYCOM)-simulated sea surface tempera-
ture’s (SST) dependence on the combined uncertainties in
subgrid-scale mixing and wind drag parameters. To obtain
accurate statistics, Alexanderian et al. [8] relied on a sys-
tematic isotropic refinement of the sparse grid, namely by
increasing the resolution level along all dimensions of the
random parameter space. As further described below, this
necessitated the generation of a relatively large database
involving hundreds of realizations.

The present study is motivated by the desire to explore,
in the context of short-duration Ocean General Circulation
Model predictions under extreme forcing events, whether
adaptive sparse quadrature can afford the construction of
PC surrogates with equal or improved fidelity to isotropic
refinement, based on a substantially smaller number of
realizations and consequently at a small fraction of the
computational cost. It is also motivated by ongoing inves-
tigations [9] of the oceanic circulation in larger domains
than was considered in our previous Gulf of Mexico
(GOM) analysis [8] and for longer simulation times. Since
the cost of such extended analyses effectively limits the
number of realizations that can be simulated, it proved
highly desirable to analyze the performance of adaptive
sampling schemes prior to launching them to dynami-
cally sample large-scale computations. Consequently, in this
paper, we exploit the preexisting database to investigate
the properties of a recent pseudo-spectral algorithm [14,
15] that is based on a direct application of the Smolyak
sparse grid formulas. The advantage of this generalized
approach is that it affords the use of arbitrary admissi-
ble sparse grids and it maximizes the number of polyno-
mial coefficients that can be computed without internal
aliasing.

The layout of this paper is as follows: In Section 2,
we discuss polynomial chaos expansions and the use of
nonintrusive spectral projection (NISP) to obtain the coef-
ficients. In Section 3, we discuss the computational model
and the previously computed database. We also discuss the
enrichment of the preexisting database in light of the global
sensitivity analysis in [8]. In Section 4, we introduce the
Smolyak pseudo-spectral projection method and apply it
to the realization database. In Section 5, we analyze the
performance of the adaptive algorithms and demonstrate

an order-of-magnitude reduction in required realizations.
Finally, in Section 6, we discuss potential improvements on
our methodology and applications to other problems.

2 Spectral approximation

In this work, we restrict our attention to the case where
the random model inputs can be parametrized in terms of
a canonical, d-dimensional random vector ξ where d is the
number of uncertain parameters. Let U(ξ , x, t) denote a ξ -
dependent QoI. The truncated PC expansion of U takes the
form

U(ξ , x, t)
.=

P∑

k=0

Uk(x, t)�k(ξ) (1)

where Uk(x, t) is the series coefficients and the �k(ξ)

form an orthogonal basis with respect to the weighted inner
product

〈U,V 〉=
∫

�

U(ξ)V (ξ)w(ξ)dξ, so that〈�i, �j 〉=δi,j‖�i‖2.

(2)

The choice of basis functions is largely dictated by the
weight function, w(ξ) > 0. When the components of ξ

are independent and uniformly distributed, as in the present
case, the basis functions are multidimensional Legendre
polynomials [16]. PC representations allow us to represent
smooth QoIs with rapidly converging expansions [1], read-
ily determine statistical moments [1] such as the mean and
variance of QoIs, compute model output sensitivity to input
parameters [5, 8], and substantially speed up the solution of
inverse problems [4, 9, 17].

The main computational burden of PC methods is the
determination of the coefficients Uk . As previously men-
tioned, in this work, we focus exclusively on NISP, which
aims at minimizing the L2 norm of the difference between
the function U(ξ) and its truncated series representation (1).
This is achieved by taking the inner product of the series
with each basis polynomial, invoking the orthogonality of
the basis, and replacing the ensuing integrals with numerical
quadrature to get

Uk = 〈U, �k〉
〈�2

k 〉 ≈ 〈U, �k〉Q
〈�2

k 〉 with 〈U, �k〉 ≈ 〈U, �k〉Q

≡
Q∑

q=1

U(ξq)�k(ξq)ωq (3)

where ξq and ωq are appropriate multidimensional quadra-
ture points and weights.

The determination of Uk thus becomes a multidimen-
sional quadrature problem. Traditionally, multidimensional
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quadrature is built using tensor products of 1D quadra-
ture rules, such as Gaussian quadrature. This approach,
however, suffers from the curse of dimensionality as the
number of realizations scales exponentially with dimen-
sion, namely as Nd where N is the number of nodes in
the underlying 1D quadrature rule and d is the number
of stochastic dimensions. As N and d become large, it is
imperative to devise alternate quadrature rules with smaller
computational cost. An optimal quadrature would maximize
accuracy for a fixed number of function evaluations (real-
izations), would be adaptive and nested in order to allow
incremental improvements while capitalizing on previous
work, and would exhibit a slower growth pattern as the num-
ber of dimensions increases. Finally, it is important to point
out that any proposed quadrature rule must have minimum
exactness requirements so as to preserve the orthogonality

of the basis functions retained in the series and, in so doing,
avoid the deleterious effects of internal aliasing (see [15]
and Appendix A).

Two avenues for improving the traditional tensor
product-based rules are the use of alternative tensorization
and/or the use of nested 1D rules such as the Clenshaw-
Curtis, Fejèr, or Gauss–Kronrod–Patterson rules [11, 18].
A well-known approach is the Smolyak quadrature [11,
13, 19]. The key idea is to represent the multidimensional
quadrature as a telescoping sum of lower level quadrature
rules. Let Q� represent the 1D quadrature rule operator
where � refers to the quadrature level, and let Qd

�U =(
Q�1 ⊗ ... ⊗ Q�d

)
U be the corresponding d-dimensional

rule. Furthermore, define the difference operator �� =
Q� − Q�−1 with �0 = Q0 = 0. Rewriting Q� in terms of
��, inserting the resulting expression in the tensor product,

Fig. 1 Examples of 2D
tensorizations, showing the
multi-index construction (top),
the realization stencil (middle),
and the resulting polynomial
exactness (bottom). The
realization stencil and
polynomial exactness
correspond to
Gauss–Kronrod–Patterson 1D
rules [11, 18]. a An isotropic
full-tensor representation of
level � = 3 multi-index such
that F = {k : ||k||∞ ≤ �}. b A
classical Smolyak representation
of level � = 3 where multi-index
is such that
F = {k : ||k||1 ≤ � + d − 1}. c
General anisotropic multi-index
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and switching the order of tensorization and summation,
Qd

�U can now be rewritten as a telescoping sum over a
multi-index set, F :

QdU =
∑

k∈F

(
�k1 ⊗ ... ⊗ �kd

)
U. (4)

Here, k = (k1, k2, . . . , kd) is a vector of integer indices
referring to the quadrature level in each direction and such
that ki ≤ �i . Different types of Smolyak quadrature can
be obtained with different choices of the index set F . This
is illustrated in Fig. 1 for a simple 2D example. When
the quadrature level is allowed to roam the hyper-rectangle
ki ≤ �i , alternatively ‖k‖∞ ≤ l, we obtain the tradi-
tional full tensorization shown in Fig. 1a. The classical
Smolyak quadrature is obtained when F contains only the
multi-indices, satisfying ‖k‖1 ≤ � + d − 1 as shown in
Fig. 1b. The last column in Fig. 1 shows an arbitrary (admis-
sible) index set F , demonstrating that multidimensional
quadrature need not be isotropic. Not only can different
1D rules be used in different directions but a quadrature
with more specific multidimensional order can also be
created [19].

3 HYCOM database

The interest in improving the quadrature sampling of poly-
nomial chaos expansions (PCEs) came about during a
global sensitivity analysis of the uncertainty in subgrid
mixing and wind drag parameters of an ocean general cir-
culation model (HYCOM) [8]. Here, we summarize this
prior work and motivate the need for more effective sam-
pling strategies by highlighting the drawbacks of isotropic
refinement.

The work in [8] revolved around studying the impact of
four uncertain subgrid-scale parameters on the simulated
oceanic response to Hurricane Ivan in 2004. Three parame-
ters were connected with the mixed-layer parameterization
and one with the wind drag coefficient; the uncertainty of
these four parameters is listed in Table 1. The main output
uncertainties, or QoIs, correspond to averaged value of sea

Table 1 The random input parameters for HYCOM

Parameter Description Distribution

θ1 Critical Richardson number U(0.25, 0.7)

θ2 Background viscosity (m2/s) U(10−4, 10−3)

θ3 Background diffusivity (m2/s) U(10−5, 10−4)

θ4 Stochastic wind drag coefficient U(0.2, 1.0)

Here, U [ai , bi ] designates a uniformly distributed probability density
function over the interval ai ≤ θ ≤ bi ; the canonical stochastic
variables |ξi | ≤ 1 are then defined as θi(ξi ) = ai+bi

2 + bi−ai

2 ξi

surface height (SSH), SST, and mixed-layer depth (MLD),
within a geographic region whose bottom-left and upper-
right corners are at 90W/20N and at 82W/30N, respectively;
in addition, the heat flux (Qtot) in a 150-km region sur-
rounding the observed center of Ivan was also investigated.
The HYCOM computational grid covered the GOM and
a large portion of the Caribbean Sea at a resolution of
1/25◦ ≈4 km and 20 vertical layers; the simulation spanned
the entire transit of Ivan through the Gulf of Mexico from 9
September to 14 September 2004. Each realization required
2.5 h on an eight-core node and required 764 megabytes
of storage. This large computational burden is the primary
motivation behind the present work.

The PCE basis consisted of tensor products of Legen-
dre polynomials, and the series was truncated isotropically
at fifth order in each direction. The numerical quadra-
ture consisted of a classical Smolyak sparse grid based
on the 1D Gauss–Kronrod–Patterson rule. An ensemble of
385 realizations was required to pseudo-spectrally compute
polynomials of order ≤5. This represented a substantial
amount of computational time and storage given the grid’s
spatial resolution and extent. The adequacy of the PCE rep-
resentation was checked via a number of error metrics [8].
Global sensitivity analysis revealed that the uncertainty in
the QoIs was dominated by the third and fourth param-
eters (the background diffusivity and wind drag coeffi-
cient, respectively) whereas the first two contributed little
(see Fig. 2).

Additional insight into the response of the oceanic circu-
lation to the uncertain parameters can be gained from Fig. 3,
which depicts projections of the box-averaged SST onto the
axes of the random parameter space. The plots reveal an
almost linear dependence of SST on ξ1, ξ2, and ξ3 (panels
a, b, and c, respectively), which suggests that a lower order
PCE along these dimensions would be sufficient. In con-
trast, Fig. 3d reveals a highly curved response for higher
values of ξ4, which indicates that a higher order expansion
is required to suitably represent it.
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sensitivity index of parameter θi [8]
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Fig. 3 Projections of the
box-averaged SST at t = 150 h
on canonical axes of the random
parameter space: a ξ1, b ξ2, c ξ3,
and d ξ4
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Figure 4 shows the normalized coefficients, Uk||�k||,
labeled by the corresponding multi-index; the zeroth coef-
ficient is excluded. As expected from Fig. 3, the only
significant normalized coefficient involving ξ3 is the lin-
ear term. Apart from this term, the normalized coefficients
having significant amplitude involve monomials of ξ4. The
slow decay of normalized coefficients involving ξ4 also
highlights the need for increased resolution along that axis.

In preparation for the analysis of adaptive expansions,
additional computations were performed using the same
model and stochastic setting considered in [8]. On one
hand, we generated a separate database consisting of 256-
member Latin hypercube sampling (LHS) ensemble. This
was deemed desirable for the purpose of evaluating the qual-
ity of the PCE representations based on a set of realizations
that is independent from that used for their construction.

On the other hand, motivated in large part by the results
of the global sensitivity analysis, a preliminary assessment

of adaptive refinement was conducted, namely by enriching
the isotropic database generated in [8] preferentially along
the third and fourth dimensions. Specifically, the database
was enriched by including additional levels in the Smolyak
quadrature, in such a way as to enable us to accurately
capture polynomials of order ≤5 in the first two variables
and ≤7 in the third and fourth variables.

Using the resulting anisotropic data, we analyzed the
behavior of the solution for the different anisotropic trun-
cations listed in Table 2. In particular, we used the relative
L2 error between the corresponding PC representations and
the LHS ensemble as a fidelity metric. Since the relative
importance of individual components of ξ may be time-
dependent, we plot in Fig. 5 the time evolution of this
metric for different refinement levels. The results indicate
that the PC representations which include higher order terms
in the first two dimensions perform marginally better than
those with a lower order truncation, whereas a substantial
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clarity
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Table 2 Table of anisotropic series experiments

Simple truncation P Number of realizations

p = (5, 5, 5, 5) 126 385

p = (5, 5, 7, 7) 168 513

p = (2, 2, 5, 5) 36 73

p = (2, 2, 7, 7) 59 169

In the first column, p is a vector representing the polynomial
order of accuracy along the individual dimensions, the second col-
umn represents the size of the resulting basis, and the third col-
umn indicates the number of realizations in the Smolyak sparse
grid. The polynomial basis is described using multi-index set

F =
{

k ∈ N
d
0 : ∑d

i=1
ki

pi
≤ 1

}

reduction in the error can be observed at later times when
the PCE is enriched to seventh order in the third and fourth
directions. This suggests that a coarse resolution in the first
two directions can be safely adopted and that, using adaptive
refinement, a suitable representation can be obtained at a
substantially reduced cost compared to isotropic refinement.

In the following, we will investigate how the adaptive
pseudo-spectral algorithm can be used to systematically
refine the sampling of the stochastic parameter space and
the corresponding PC representation and to quantify the per-
formance gains thus achieved. The enriched Smolyak set
with p = (5, 5, 7, 7) will be specifically used as a database
for the a priori tests.

4 General adaptive PCE

A disadvantage of the dimensional refinement scheme
above is that it is relatively inefficient, potentially leading
to the inclusion of a large number of realizations with every
refinement step. Another disadvantage concerns the asso-
ciated truncation scheme which, in order to avoid internal
aliasing (Appendix A), severely limits the number of poly-
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Fig. 5 Relative L2 error between the area-averaged SST and the
LHS sample. Curves are generated for different anisotropic refinement
levels, as indicated

nomials included in the truncated basis. An attractive avenue
to overcome these drawbacks is provided by the adaptive
pseudo-spectral algorithm recently proposed in [15]. In this
section, we will first outline its construction and then eval-
uate its performance based on a priori tests that exploit the
HYCOM database described in the previous section.

4.1 Smolyak pseudo-spectral projection

As described in [15], the basis of the pseudo-spectral pro-
jection is to apply Smolyak algorithm directly to construct
the PCE instead of purely generating the quadrature. Thus,
the final projection becomes a weighted sum of aliasing-free
subprojections. This represents an extension of the Smolyak
tensor construction from quadrature operators to projection
operators.

Specifically, the PC representation resulting from the
pseudo-spectral algorithm is expressed as a sum of isotropic
and anisotropic full-tensor subprojections [15]. Full ten-
sorization leads to a “rectangular” multi-index, as illustrated
in Fig. 6a for a 2D example. The dotted rectangle in Fig. 6b
depicts the set, O, of polynomials whose coefficients can
be determined without internal aliasing. The PC basis in the
pseudo-spectral construction contains the orthogonal poly-
nomials whose orders belong to the union of all Ok’s [15].

Note that each subprojection in the pseudo-spectral con-
struction is a full PC representation of U that is free of
internal aliasing. As schematically illustrated in Fig. 7, the
subprojections are then combined based on the Smolyak
construction. A key feature of the pseudo-spectral construc-
tion is that it affords a general refinement approach based on
successive inclusion of any admissible multi-index, F , of
quadrature rules [19] while maintaining the representation
free of internal aliasing. Another beneficial feature concerns
the ability to retain, using the same realization stencil, a
larger number of polynomials than is possible with a clas-
sical dimensional truncation/quadrature approach. This, in
particular, includes high-order monomial terms that are not
accurately estimated using the latter. As a specific exam-
ple, for the HYCOM database with 513 realizations, using
the pseudo-spectral algorithm, we are able to determine
an orthogonal basis containing 402 polynomials, whereas
only a 168-polynomial basis is obtained using the direct
quadrature approach.

4.2 General adaptive driver

The construction of the adaptive driver in [15] follows
the general framework introduced by Gerstner and Griebel
[19] for adaptive quadrature. We begin with the first-order
quadrature in all dimensions, which permits only a zeroth-
order expansion. We then add all the forward neighbors and
perform the projection. The pseudo-spectral construction of
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Fig. 6 a Schematic illustration
a fully tensorized projection in
two dimensions. b Schematic of
the polynomial exactness of the
quadrature rule. The
polynomials whose order fall
within the dotted rectangle are
resolvable in the resulting
projection without internal
aliasing
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a function U is built on the tensor product of projections
differences of the form

(
�k1 ⊗ ... ⊗ �kd

)
U,

which can be interpreted as a PCE of projection differences.
The L2 norm of this difference can be readily used to define
an error indicator for multi-index k:

ε(k) = || (�k1 ⊗ ... ⊗ �kd

)
U ||. (5)

The indicator represents the surplus of variance due to the
k subprojection. The surplus is computed for each k ∈ F ,
and the subprojection with the highest ε(k) is selected for
subsequent refinement, which generally consists of inclu-
sion of admissible forward neighbors. In the present a priori
analysis, the selection of a multi-index k for refinement is
subject to the requirement that it has at least one forward
neighbor that meets all of the following criteria:

1. The forward neighbor is not already in F ,

Fig. 7 Example showing how
the final projection is a weighted
sum of full-tensor (rectangular)
subprojections
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2. F remains admissible with the inclusion of the forward
neighbor, and

3. The additional realizations associated with the forward
neighbor are in the database.

If no forward neighbor meets the criteria above, then the
projection with the next highest indicator, ε, is chosen. The
process repeats until a valid forward neighbor cannot be
added or the database is exhausted. All of the forward neigh-
bors of the critical multi-index which meet the criteria above
are added to F in a single refinement step, and a new PCE
is calculated using the Smolyak pseudo-spectral projection.
See Fig. 8 for an illustration.

Note that when the refinement algorithm is used dynam-
ically, i.e., not in conjunction with a preexisting database,
requirement 3 is naturally omitted. Also, note that in all
cases, the first two iterations will always be identical. The
first iteration consists of a zeroth-order projection, whereas
the second iteration includes all forward neighbors in all
directions.

5 Results

The adaptive algorithm described in Section 4.2 is first
tested using the area-averaged SST as the QoI, and the algo-
rithm’s performance is analyzed by computing the relative
error between its PCE and the LHS ensemble. The study is
performed for t = 60 h and t = 120 h, i.e., at times when ξ3

is dominant and when both ξ3 and ξ4 contribute substantially
to the total variance (see Fig. 2). From Fig. 3, we expect SST
to exhibit a steep dependence on ξ4 at later times, whereas
the dependence on ξ3 is expected to remain essentially lin-
ear. Note that at t = 120 h, the hurricane is located within
the analysis region.
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Fig. 8 Schematic illustration of a refinement step showing the addi-
tion of two forward neighbors of a critical multi-index

As previously discussed, the adaptive pseudo-spectral
algorithm is anticipated to lead to performance gains due to
two features: (1) judicious selection of stencils so as to max-
imize the ability to capture the variance of the selected QoI
and (2) maximizing the PC basis, namely by including all
polynomials that can be evaluated while avoiding internal
aliasing. Figure 9 illustrates the impact of these features by
comparing the errors in the area-averaged SST for different
basis refinement strategies:

S1. The adaptive pseudo-spectral algorithm,
S2. The pseudo-spectral PCE construction algorithm

applied to an isotropically refined sparse grid, and
S3. The isotropic Smolyak quadrature with direct projec-

tion.

For S2 and S3, the final point includes the entire database.
Thus, the key difference between the second and third con-
structions concerns the inclusion of a larger basis in the
former. In all cases, both the quadrature accuracy and the
PCE stencil are refined.

Figure 9 shows the error of the adaptive pseudo-spectral
algorithm decreasing rapidly and essentially saturating after
the fifth iteration. At this stage, the adaptive pseudo-spectral
PCE (S1) uses 69 realizations and the corresponding basis
has 59 polynomials. In contrast, Fig. 9 indicates that the
decay of the relative error is substantially slower with
isotropic refinement (S3), though noticeable improvement
over Smolyak quadrature is observed when the basis is
constructed pseudo-spectrally (S2).

The curves also indicate that the error levels experi-
enced with isotropically refined grids remain substantially
larger than with the adaptive pseudo-spectral algorithm, at
least until the entire database is used. Combined, the results
indicate that the adaptive pseudo-spectral algorithm can
lead to substantial gains that arise due to judicious refine-
ment of the realization stencil and of the PC basis. An
illustration of the savings afforded by the adaptive pseudo-
spectral construction is provided in the right panel of Fig. 9,
which contrasts probability density functions (PDFs) of the
SST obtained based on the PCE generated with the adap-
tive scheme at iteration 5 (69 realizations), with results
obtained similarly but using the full database. The close
agreement between all three curves highlights the computa-
tional savings obtained using the adaptive pseudo-spectral
algorithm as well as the validity of the corresponding
representation.

It is interesting to note that with isotropic sampling, a
large number of realizations are added as the refinement
level increases, whereas in adaptive sampling, the number
of realizations increases at a much slower rate with the iter-
ation count. It is also interesting to note the plateau in the
relative RMS is small, about 1 %. This is consistent with
the earlier analysis in [8], which indicated that a level 5
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Fig. 9 Left: LHS error versus
realization count for the three
refinement strategies: (S1) the
adaptive pseudo-spectral
algorithm; (S2) the
pseudo-spectral construction
applied in combination with
isotropic refinement, except for
the last point where the full
database is used; and (S3)
Smolyak sparse quadrature,
except for the last iteration for
which dimension truncation is
used in conjunction with the full
database. Right: PDFs of SST
based on (S1) the PCE
corresponding to the adaptive
pseudo-spectral algorithm at
iteration 5 (69 realizations and
59 polynomials), (S2) the
pseudo-spectral PCE using the
full database, and (S3) the PCE
constructed using Smolyak
quadrature using the full
database. In all cases, the PDFs
are generated using 106 samples
drawn from the corresponding
PCEs. Top row: t = 60 h;
bottom row: t = 120 h
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isotropic refinement leads to a suitable representation of the
solution response.

In order to investigate the origin of the plateau in the
RMS error in Fig. 9, we have examined the evolution of
the realization stencil in the adaptive refinement scheme.
This exercise revealed that the error plateau arises when the
refinement reaches the limits of the database, i.e., when for-
ward neighbors of the critical multi-index are not available.
An illustration of the evolution of the adaptive refinement
is provided in Fig. 10, which depicts projections of the
stencil on the ξ3–ξ4 plane. Recall that the first two itera-
tions are always identical and reflect an isotropic refinement
step in all directions. Consistent with the results of the sen-
sitivity analysis [8] and the projections shown in Fig. 3,
the refinement first proceeds along ξ3. Because a linear
approximation in ξ3 effectively captures the corresponding
dependence, refinement then proceeds along ξ4. The steep
variation of SST at the higher values of ξ4 (see Fig. 3)
requires a high-order polynomial representation; refinement
proceeds along ξ4 until the limits of the database are reached
(iteration 5). This then forces the algorithm to sequen-
tially select the remaining stencils afforded by the database,
including the mixed terms that appear at the higher iteration
counts.

As noted, the refinement became limited by the realiza-
tion database at iteration 5 for both t = 60 h and t = 120 h.

Without such limitation, the refinement would have more
monomial terms in ξ4. Once the database was exhausted, the
relative L2 error plateaued in Fig. 9 and all additional terms
had little impact.

Another interesting observation in Figs. 9 and 10 is that
the adaptive refinement proceeds in a similar fashion for
the area-averaged SST at t = 60 h and t = 120 h. This
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Fig. 10 Schematic illustration of the evolution of the adaptive refine-
ment algorithm. Plotted are projections of the stencils on the ξ3–ξ4
plane. The boxes indicate the refinement levels, whereas the numbers
within each box refer to the iteration number at which the box was
added to the stencil. Recall that iterations 1 and 2 are always isotropic.
Note that refinement occurs first along ξ3 but then progresses along
ξ4, where the limits of the database are reached. Left: t = 60 h; right:
t = 120 h
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Fig. 11 Relative L2 error between the PCE of the averaged SST and
the LHS sample. Plotted are curves generated with (1) the pseudo-
spectral algorithm adapted to the solution at t = 60 h, (2) the
pseudo-spectral algorithm using the full database, and (3) the Smolyak
quadrature using the full database. For the adapted solution, the refine-
ment is stopped after iteration 5, leading to 69 realizations and a PCE
with 59 polynomials. The full 513 database curves have 402 polyno-
mials for the pseudo-spectral construction and 168 polynomials for the
Smolyak quadrature

can be explained by noting that the dependence on ξ3, the
dominant variable at early times, is to a large extent cap-
tured by a linear term throughout the simulation. As the
hurricane enters into the analysis region, the drag coeffi-
cient becomes the dominant contributor to the variance. As
depicted earlier, the dependence on ξ4 is highly nonlin-
ear and evolves with time. However, it is rapidly captured
with the next few refinement steps. Though time-dependent,
subsequent iterations that lead to the inclusion of mixed
terms take place well after the error has decreased dramat-
ically. This should be viewed as a particular feature of the
present application and may not be necessarily the case for
others.

To further verify the fidelity of the adaptive PCE with
time, we plot in Fig. 11 the evolution of the relative LHS
error based on the adaptive pseudo-spectral solution trun-
cated at iteration 5 (69 realizations, 59 polynomials), the
pseudo-spectral expansion using the full database (513 real-
izations, 402 polynomials), and the Smolyak quadrature
using the full database (168 polynomials). The adaptive

solution is based on the box-averaged SST at t = 60 h.
The results show close agreement between the adapted solu-
tion and the pseudo-spectral approximation based on the
full database, throughout the computations. Also, note that
at larger times, the adaptive solution exhibits error lev-
els that are substantially smaller than those obtained using
the Smolyak quadrature, though the latter involves a much
larger number of realizations.

It is also instructive to examine whether a PCE result-
ing from adaptive refinement based on a specific QoI
would also prove suitable for the purpose of represent-
ing other QoIs and whether adaptive refinement driven by
multiple QoIs simultaneously would potentially require a
large number of realizations and consequently limit perfor-
mance gains. Though these issues in general vary from one
application to another, it is still worthwhile to address them
in the present setting of the oceanic response to hurricane-
strength winds.

Figure 12 shows the relative L2 error based on the LHS
ensemble for heat flux, Qtot (Section 3), and the box-
averaged SST. Plotted are the results obtained using PCEs
that are adapted using either (1) the box-averaged SST or
(2) Qtot as the sole refinement QoI at t = 60 h. The curves
show that the decay of the error is not identical in both cases,
indicating that the refinement does not follow the same pat-
tern and that optimal sampling and PCE may depend on the
selected QoI. This is not surprising since the SST is aver-
aged over a fixed region, whereas Qtot involves an average
in a circular area around the center of the hurricane. Thus,
Qtot is always affected by the high winds whereas the box-
averaged SST experiences both weak winds and high winds.
Note, however, that in both cases, a plateau in the error
curves is achieved at about the same number of realizations
and much earlier than with isotropic sampling. Thus, in the
present examples, the performance gains do not appear to
be substantially affected by the QoI selected.

An alternative to the single QoI adaptation is to
adapt concurrently based on multiple QoIs, wherein the

Fig. 12 Relative L2 error
between LHS sample and the
PCEs for SST and Qtot. The
adaptive refinement is based on
the critical multi-index for a the
box-averaged SST and b Qtot
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refinement considers the union of the forward neighbors
corresponding to the critical multi-indices of all QoIs. This
strategy potentially involves a larger number of realizations
than with single-QoI adaptation but naturally overcomes the
drawback identified above. In Fig. 13, we plot curves of the
relative L2 LHS error against the realization count for all
four QoIs considered, namely SST, SSH, MLD, and Qtot.
The results indicate that with the present refinement strat-
egy, all error estimates decay rapidly. Note that as expected,
in the present case, the refinement steps generally include
a larger number of realizations than in single-QoI adap-
tation. The error curves tend to become essentially flat
when the realization count exceeds 70. Thus, for the present
setting, similar performance gains are achieved when con-
sidering SST alone or in combination with SSH, MLD, and
Qtot. Of course, in other settings, some QoIs may converge
slower than others, and it may be advantageous to consider
more elaborate algorithms, for instance stopping refinement
based on a specific QoI when the corresponding PCE is
deemed sufficiently resolved.

We conclude with brief remarks concerning the scope of
the present implementations and potential extensions. In the
a priori analyses above, the adaptive algorithm was allowed
to proceed until the entire database of precomputed real-
izations was exhausted. In dynamic implementation, this is
of course not possible, and suitable stopping criteria must
be provided. In this regard, we point out that the adaptive
sampling scheme supports a variety of approaches, based
for instance on monitoring the saturation of the variance in
selected QoIs, providing global tolerance levels for the error
indicators, or detecting occurrence of plateaus in the inter-
polation error. The implementation of such criteria would
naturally exploit the variance-based error indicators asso-
ciated with active multi-indices and may also involve the
corresponding number of forward neighbors. As discussed
in [19], the latter may also be used for the purpose of
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Fig. 13 Relative error versus realization count. Plotted are curves
SST, SSH, MLD, and Qtot. The stencil is enriched by the union of all
admissible forward neighbors determined for each QoI individually

introducing suitable cost functions and accordingly opti-
mize the enrichment of the realization stencil.

6 Conclusion

This work has exploited an existing database of HYCOM
simulations of the oceanic response in the GOM to Hur-
ricane Ivan to perform an a priori analysis and testing of
adaptive methods. The database was adapted from prior
work [8], where a sparse isotropic sampling scheme was
used to propagate uncertainties in the wind drag coef-
ficient and subgrid mixing parameterizations. Guided by
the sensitivity analysis in [8], the database was enriched
along the dominant directions. This resulted in an extended
database comprising 513 independent realizations, with
stochastic coordinates located at the quadrature points of
an anisotropic sparse grid. For the purpose of characteriz-
ing representation errors, we also generated an independent
Latin hypercube sample consisting of 256 realizations.

The adaptive pseudo-spectral algorithm recently devel-
oped in [15] was implemented and deployed on the enriched
database. It accommodates anisotropic refinement on arbi-
trary admissible sparse grids and enables the evaluation
of a “maximal” basis set in a manner that avoids internal
aliasing. Inherent in the adaptive pseudo-spectral construc-
tion is an error refinement indicator which can be readily
used to drive anisotropic refinement of the sparse grid. This
involves inclusion of admissible forward neighbors of the
critical multi-index or critical multi-index set.

The performance of the adaptive pseudo-spectral algo-
rithm was also tested a priori using the HYCOM database.
The tests included adaptive refinement based on a single
QoI and on multiple QoIs. In particular, the tests indicated
that suitable PCEs of the uncertain model response can
be constructed at a small fraction of the cost of isotropic
sampling and that the performance gains arise from the
algorithm’s ability to refine efficiently, as well as from
the inclusion of all polynomials whose coefficients can be
determined without internal aliasing.

The present a priori tests thus provide support to the
deployment of the adaptive pseudo-spectral algorithm in a
dynamic fashion. The adaptive pseudo-spectral algorithm
has already been adopted in a study of the oceanic response
to Typhoon Fanapi where it is used to build the surrogate
needed for uncertainty propagation and parameter infer-
ence; results from this study will be reported elsewhere [9].
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Appendix A: Internal aliasing

As discussed in [15], internal aliasing refers to the errors
incurred in the numerical evaluation of inner products
between elements of the truncated basis. Let Pmf and Smf

refer to the exact and approximate projections of a function
f ∈ L2 on the truncated orthonormal basis {ψi}mi=0; we
have

Pmf =
m∑

i=0

f̂iψi(ξ) withf̂i = 〈f, ψi〉 (6)

Smf =
m∑

i=0

f̃iψi(ξ) withf̃i =〈f, ψi〉Q=〈f, ψi〉 + εi (7)

where 〈·, ·〉 refers to the continuous inner product (exact
integration), 〈·, ·〉Q refers to its approximation via quadra-
ture, and εi is the quadrature error. An expression for the
error can be obtained by inserting the untruncated series
representation P∞f into (7), which results in

f̃i =
m∑

j=0

f̂j 〈ψj , ψi〉Q +
∞∑

j=m+1

f̂j 〈ψj , ψi〉Q. (8)

The first term in the above equation has been dubbed the
internal aliasing error whereas, the second one is the (usual)
external aliasing. If the numerical quadrature preserves dis-
crete orthogonality for elements of the truncated basis, i.e.,
〈ψj , ψi〉Q = δi,j for (i, j) ≤ m, we get the familiar result
that the difference between the pseudo-spectral coefficients
f̃i and the spectral coefficients f̂i is solely due to external
aliasing [20].

Note that when the selected quadrature does not preserve
discrete orthogonality in the truncated basis, large errors can
generally be anticipated, which frequently leads to poor rep-
resentations. Consequently, it is generally essential to avoid
internal aliasing, and various means can be adopted for this
purpose. With direct quadrature rules, however, this may
lead to severe restriction on the truncated basis used in the
expansion. An illustration of this phenomenon is shown in
Fig. 14, which schematically depicts a 2D example. In the
figure, we have used green boxes to depict elements of a
truncated basis and black boxes to depict polynomial orders
for which the quadrature would be exact. In this example,
the selected quadrature would not be suitable, since inner
products involving polynomials of order 4 or larger may
not be exactly computed. For instance, the inner product
〈ψ5(ξ1)ψ5(ξ2)〉 would not vanish. To avoid internal alias-
ing using the quadrature depicted in the figure, the truncated
basis would need to be further reduced by dropping all poly-
nomials of order 4 or higher. As discussed in Section 4.1,
in multidimensional settings, the adaptive pseudo-spectral
construction provides an attractive alternative to direct pro-
jection, as it generally enables us to retain a larger number
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Fig. 14 Schematic demonstration of internal aliasing in 2D. The green
boxes represent a truncated polynomial basis and the black boxes delin-
eate the boundary of the polynomial exactness of direct quadrature.
Depicted is an example showing how the inner product of the selected
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of additional polynomials than with direct quadrature while
avoiding internal aliasing errors.
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