85 research outputs found

    Comparison of Flow-Through Cell and Paddle Methods for Testing Vaginal Tablets Containing a Poorly Water-Soluble Drug

    Get PDF
    Purpose: To evaluate the usefulness of the flow-through cell apparatus for testing commercial vaginal tablets containing poorly water-soluble clotrimazole.Methods: The effect of experimental conditions (type of dissolution medium, flow rate and positioning of the tablet) on the dissolution profile of clotrimazole were examined and optimal parameters for conducting the experiments were determined. The amount of drug released was analyzed by high performance chromatography (HPLC) at 210 nm. The usefulness of the flow-through cell apparatus was compared to FDA recommended paddle apparatus.Results: Using acetate buffer pH 5.2 containing 1 % SDS, both methods gave different dissolution profiles. The paddle apparatus tended to give faster rate of dissolution (approx. 88.5 % during the first 20 min of the experiment), which was probably caused by higher agitation and greater surface area of the drug-dissolution medium in a vessel. In the flow-through cell method, total drug release was definitely slower and was observed after 2 to 5 h; at a flow rate of 16 ml/min, more than 80 % of the drug dissolved after 30 min of the test. It was noticed that raising the flow rate of the dissolution medium caused significantly higher drug release.Conclusion: The results demonstrate that the flow-through cell method is reproducible and can be successfully used for evaluating in vitro dissolution of clotrimazole from non-modified release tablets. The slower rate of dissolution obtained in the flow-through cell method would help to distinguish between different formulations.Keywords: Dissolution test, Flow-through cell method, Paddle method, Clotrimazol

    Ex Vivo Activity of Cardiac Glycosides in Acute Leukaemia

    Get PDF
    BACKGROUND: Despite years of interest in the anti-cancerous effects of cardiac glycosides (CGs), and numerous studies in vitro and in animals, it has not yet been possible to utilize this potential clinically. Reports have demonstrated promising in vitro effects on different targets as well as a possible therapeutic index/selectivity in vitro and in experimental animals. Recently, however, general inhibition of protein synthesis was suggested as the main mechanism of the anti-cancerous effects of CGs. In addition, evidence of species differences of a magnitude sufficient to explain the results of many studies called for reconsideration of earlier results. PRINCIPAL FINDINGS: In this report we identified primary B-precursor and T-ALL cells as being particularly susceptible to the cytotoxic effects of CGs. Digitoxin appeared most potent and IC(50) values for several patient samples were at concentrations that may be achieved in the clinic. Significant protein synthesis inhibition at concentrations corresponding to IC(50) was demonstrated in colorectal tumour cell lines moderately resistant to the cytotoxic effects of digoxin and digitoxin, but not in highly sensitive leukaemia cell lines. CONCLUSION: It is suggested that further investigation regarding CGs may be focused on diagnoses like T- and B-precursor ALL

    The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion.

    Get PDF
    Aminopeptidase N (CD13) is a widely expressed cell surface metallopeptidase involved in the migration of cancer and endothelial cells. Apart from our demonstration that CD13 modulates the efficacy of tumor necrosis factor-α-induced apoptosis in neutrophils, no other function for CD13 has been ascribed in this cell. We hypothesized that CD13 may be involved in neutrophil migration and/or homotypic aggregation. Using purified human blood neutrophils we confirmed the expression of CD13 on neutrophils and its up-regulation by pro-inflammatory agonists. However, using the anti-CD13 monoclonal antibody WM-15 and the aminopeptidase enzymatic inhibitor bestatin we were unable to demonstrate any direct involvement of CD13 in neutrophil polarisation or chemotaxis. In contrast, IL-8-mediated neutrophil migration in type I collagen gels was significantly impaired by the anti-CD13 monoclonal antibodies WM-15 and MY7. Notably, these antibodies also induced significant homotypic aggregation of neutrophils, which was dependent on CD13 cross-linking and was attenuated by phosphoinositide 3-kinase and extracellular signal-related kinase 1/2 inhibition. Live imaging demonstrated that in WM-15-treated neutrophils, where homotypic aggregation was evident, the number of cells entering IL-8 impregnated collagen I gels was significantly reduced. These data reveal a novel role for CD13 in inducing homotypic aggregation in neutrophils, which results in a transmigration deficiency; this mechanism may be relevant to neutrophil micro-aggregation in vivo.This work was funded by a Medical Research Council Research Training Fellowship to CAF (G0900329), Addenbrooke’s Charitable Trust (ACT), CUHNHSFT, Papworth Hospital NHS Foundation Trust and the NIHR Cambridge Biomedical Research Centre. CAF received a Raymond and Beverly Sackler Studentship.This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pone.016010

    Drug-mediated inhibition of Fli-1 for the treatment of leukemia

    Get PDF
    The Ets transcription factor, Fli-1 is activated in murine erythroleukemia and overexpressed in various human malignancies including Ewing's sarcoma, induced by the oncogenic fusion protein EWS/Fli-1. Recent studies by our group and others have demonstrated that Fli-1 plays a key role in tumorigenesis, and disrupting its oncogenic function may serve as a potential treatment option for malignancies associated with its overexpression. Herein, we describe the discovery of 30 anti-Fli-1 compounds, characterized into six functional groups. Treatment of murine and human leukemic cell lines with select compounds inhibits Fli-1 protein or mRNA expression, resulting in proliferation arrest and apoptosis. This anti-cancer effect was mediated, at least in part through direct inhibition of Fli-1 function, as anti-Fli-1 drug treatment inhibited Fli-1 DNA binding to target genes, such as SHIP-1 and gata-1, governing hematopoietic differentiation and proliferation. Furthermore, treatment with select Fli-1 inhibitors revealed a positive relationship between the loss of DNA-binding activity and Fli-1 phosphorylation. Accordingly, anti-Fli-1 drug treatment significantly inhibited leukemogenesis in a murine erythroleukemia model overexpressing Fli-1. This study demonstrates the ability of this drug-screening strategy to isolate effective anti-Fli-1 inhibitors and highlights their potential use for the treatment of malignancies overexpressing this oncogene

    In Vitro Influence of Mycophenolic Acid on Selected Parameters of Stimulated Peripheral Canine Lymphocytes.

    Get PDF
    Mycophenolic acid (MPA) is an active metabolite of mycophenolate mofetil, a new immunosuppressive drug effective in the treatment of canine autoimmune diseases. The impact of MPA on immunity is ambiguous and its influence on the canine immune system is unknown. The aim of the study was to determine markers of changes in stimulated peripheral canine lymphocytes after treatment with MPA in vitro. Twenty nine healthy dogs were studied. Phenotypic and functional analysis of lymphocytes was performed on peripheral blood mononuclear cells cultured with mitogens and different MPA concentrations- 1 ÎŒM (10(-3) mol/m(3)), 10 ÎŒM or 100 ÎŒM. Apoptotic cells were detected by Annexin V and 7-aminoactinomycin D (7-AAD). The expression of antigens (CD3, CD4, CD8, CD21, CD25, forkhead box P3 [FoxP3] and proliferating cell nuclear antigen [PCNA]) was assessed with monoclonal antibodies. The proliferation indices were analyzed in carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled cells. All analyses were performed using flow cytometry. The influence of MPA on apoptosis was dependent on the mechanism of cell activation and MPA concentration. MPA caused a decrease in the expression of lymphocyte surface antigens, CD3, CD8 and CD25. Its impact on the expression of CD4 and CD21 was negligible. Its negative influence on the expression of FoxP3 was dependent on cell stimulation. MPA inhibited lymphocyte proliferation. In conclusion, MPA inhibited the activity of stimulated canine lymphocytes by blocking lymphocyte activation and proliferation. The influence of MPA on the development of immune tolerance-expansion of Treg cells and lymphocyte apoptosis-was ambiguous and was dependent on the mechanism of cellular activation. The concentration that MPA reaches in the blood may lead to inhibition of the functions of the canine immune system. The applied panel of markers can be used for evaluation of the effects of immunosuppressive compounds in the dog
    • 

    corecore