846 research outputs found

    Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A

    Get PDF
    Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star’s rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1°.6 ± 2°.4. Therefore, the three largest sources of angular momentum—the stellar orbit, the planetary orbit, and the primary’s rotation—are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the “pseudosynchronous” period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2–4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%

    A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes

    Get PDF
    We present evidence that the WASP-14 exoplanetary system has misaligned orbital and stellar-rotational axes, with an angle lambda = 33.1 +/- 7.4 deg between their sky projections. The evidence is based on spectroscopic observations of the Rossiter-McLaughlin effect as well as new photometric observations. WASP-14 is now the third system known to have a significant spin-orbit misalignment, and all three systems have "super-Jupiter" planets (M_P > 3 Mjup) and eccentric orbits. This finding suggests that the migration and subsequent orbital evolution of massive, eccentric exoplanets is somehow different from that of less massive close-in Jupiters, the majority of which have well-aligned orbits.Comment: 8 pages, 5 figures, 3 tables, PASP accepte

    A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b

    Get PDF
    We present new spectroscopic and photometric observations of the transiting exoplanetary system WASP-3. Spectra obtained during two separate transits exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the sky-projected angle between the planetary orbital axis and the stellar rotation axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes suggests that WASP-3b has a low orbital inclination relative to the equatorial plane of its parent star. During our first night of spectroscopic measurements, we observed an unexpected redshift briefly exceeding the expected sum of the orbital and RM velocities by 140 m/s. This anomaly could represent the occultation of material erupting from the stellar photosphere, although it is more likely to be an artifact caused by moonlight scattered into the spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical Journal, Replacement includes revised citation

    HAT-P-7: A Retrograde or Polar Orbit, and a Third Body

    Get PDF
    We show that the exoplanet HAT-P-7b has an extremely tilted orbit, with a true angle of at least 86 degrees with respect to its parent star's equatorial plane, and a strong possibility of retrograde motion. We also report evidence for an additional planet or companion star. The evidence for the unparalleled orbit and the third body is based on precise observations of the star's apparent radial velocity. The anomalous radial velocity due to rotation (the Rossiter-McLaughlin effect) was found to be a blueshift during the first half of the transit and a redshift during the second half, an inversion of the usual pattern, implying that the angle between the sky-projected orbital and stellar angular momentum vectors is 182.5 +/- 9.4 degreees. The third body is implicated by excess radial-velocity variation of the host star over 2 yr. Some possible explanations for the tilted orbit are a close encounter with another planet, the Kozai effect, and resonant capture by an inward-migrating outer planet.Comment: ApJ Letters, in press [7 pages

    Relative photometry of HAT-P-1b occultations

    Get PDF
    We present HST STIS observations of two occultations of the transiting exoplanet HAT-P-1b. By measuring the planet to star flux ratio near opposition, we constrain the geometric albedo of the planet, which is strongly linked to its atmospheric temperature gradient. An advantage of HAT-P-1 as a target is its binary companion ADS 16402 A, which provides an excellent photometric reference, simplifying the usual steps in removing instrumental artifacts from HST time-series photometry. We find that without this reference star, we would need to detrend the lightcurve with the time of the exposures as well as the first three powers of HST orbital phase, and this would introduce a strong bias in the results for the albedo. However, with this reference star, we only need to detrend the data with the time of the exposures to achieve the same per-point scatter, therefore we can avoid most of the bias associated with detrending. Our final result is a 2 sigma upper limit of 0.64 for the geometric albedo of HAT-P-1b between 577 and 947 nm.Comment: 8 pages, 2 figures, 3 table

    Transits and Occultations of an Earth-Sized Planet in an 8.5-Hour Orbit

    Get PDF
    We report the discovery of an Earth-sized planet (1.16±0.19R1.16\pm 0.19 R_\oplus) in an 8.5-hour orbit around a late G-type star (KIC 8435766, Kepler-78). The object was identified in a search for short-period planets in the {\it Kepler} database and confirmed to be a transiting planet (as opposed to an eclipsing stellar system) through the absence of ellipsoidal light variations or substantial radial-velocity variations. The unusually short orbital period and the relative brightness of the host star (mKepm_{\rm Kep} = 11.5) enable robust detections of the changing illumination of the visible hemisphere of the planet, as well as the occultations of the planet by the star. We interpret these signals as representing a combination of reflected and reprocessed light, with the highest planet dayside temperature in the range of 2300 K to 3100 K. Follow-up spectroscopy combined with finer sampling photometric observations will further pin down the system parameters and may even yield the mass of the planet.Comment: Accepted for publication, ApJ, 10 pages and 6 figure

    Absence of a metallicity effect for ultra-short-period planets

    Get PDF
    Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2 Earth radii. It has been proposed that USP planets are the solid cores of hot Jupiters that lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different (p=3×104p = 3\times 10^{-4}), based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2--4~RR_\oplus. Thus it remains possible that the USP planets are the solid cores of formerly gaseous planets smaller than Neptune.Comment: AJ, in pres

    The Rotation Period of the Planet-Hosting Star HD 189733

    Get PDF
    We present synoptic optical photometry of HD 189733, the chromospherically active parent star of one of the most intensively studied exoplanets. We have significantly extended the timespan of our previously reported observations and refined the estimate of the stellar rotation period by more than an order of magnitude: P=11.953±0.009P = 11.953\pm 0.009 days. We derive a lower limit on the inclination of the stellar rotation axis of 56\arcdeg (with 95% confidence), corroborating earlier evidence that the stellar spin axis and planetary orbital axis are well aligned.Comment: To appear in A
    corecore