3,037 research outputs found

    SNOWMASS WHITE PAPER - SLHC Endcap 1.4<y<4 Hadron Optical Calorimetry Upgrades in CMS with Applications to NLC/T-LEP, Intensity Frontier, and Beyond

    Full text link
    Radiation damage in the plastic scintillator and/or readout WLS fibers in the HE endcap calorimeter 1.4<y<4 in the CMS experiment at LHC and SLHC will require remediation after 2018. We describe one alternative using the existing brass absorber in the Endcap calorimeter, to replace the plastic scintillator tiles with BaF2 tiles, or quartz tiles coated with thin(1-5 micron) films of radiation-hard pTerphenyl(pTP) or the fast phosphor ZnO:Ga. These tiles would be read-out by easily replaceable arrays of straight, parallel WLS fibers coupled to clear plastic-cladded quartz fibers of proven radiation resistance. We describe a second alternative with a new absorber matrix extending to 1.4<y<4 in a novel Analog Particle Flow Cerenkov Compensated Calorimeter, using a dual readout of quartz tiles and scintillating (plastic, BaF2, or pTP/ ZnO:Ga thin film coated quartz, or liquid scintillator) tiles, also using easily replaceable arrays of parallel WLS fibers coupled to clear quartz transmitting fibers for readout. An Analog Particle Flow Scintillator-Cerenkov Compensated Calorimeter has application in NLC/T-LEP detectors and Intensity Frontier detectors

    Snowmass White Paper CMS Upgrade: Forward Lepton-Photon System

    Full text link
    This White Paper outlines a proposal for an upgraded forward region to extend CMS lepton (e, mu) and photon physics reach out to 2.2<eta<5 for LHC and SLHC, which also provides better performance for the existing or new forward hadron calorimetry for jet energy and (eta, phi) measurements, especially under pileup/overlaps at high lumi, as LHC luminosity, energy and radiation damage increases

    G-2 and CMS Fast Optical Calorimetry

    Get PDF
    Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter

    Measuring Supermassive Black Holes in Distant Galaxies with Central Lensed Images

    Full text link
    The supermassive black hole at the center of a distant galaxy can be weighed, in rare but realistic cases, when the galaxy acts as a strong gravitational lens. The central image that should be produced by the lens is either destroyed or accompanied by a second central image, depending on the mass of the black hole. We demonstrate that when a central image pair is detected, the mass of the black hole can be determined with an accuracy of < 0.1 dex, if the form of the smooth mass distribution near the galaxy core is known. Uncertainty in the central mass distribution introduces a systematic error in the black hole mass measurement. However, even with nearly complete ignorance of the inner mass distribution, the black hole mass can still be determined to within a factor of 10. Central image pairs should be readily observable with future radio interferometers, allowing this technique to be used for a census of supermassive black holes in inactive galaxies at significant redshift (0.2 < z < 1.0).Comment: 12 pages including 4 figures, ApJL in press (edited to match published version, one typo corrected

    The central image of a gravitationally lensed quasar

    Full text link
    A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts there should be an odd number of images but, paradoxically, almost all observed lenses have 2 or 4 images. The missing image should be faint and appear near the galaxy's center. These ``central images'' have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates, but in one case the third image is not necessarily a central image, and in the others, the central component might be a foreground source rather than a lensed image. Here we report the most secure identification of a central image, based on radio observations of PMN J1632-0033, one of the latter candidates. Lens models incorporating the central image show that the mass of the lens galaxy's central black hole is less than 2 x 10^8 M_sun, and the galaxy's surface density at the location of the central image is more than 20,000 M_sun per square parsec, in agreement with expectations based on observations of galaxies hundreds of times closer to the Earth.Comment: Nature, in press [7 pp, 2 figs]. Standard media embargo applies before publicatio

    TERMS Photometry of Known Transiting Exoplanets

    Get PDF
    The Transit Ephemeris Refinement and Monitoring Survey (TERMS) conducts radial velocity and photometric monitoring of known exoplanets in order to refine planetary orbits and predictions of possible transit times. This effort is primarily directed towards planets not known to transit, but a small sample of our targets consist of known transiting systems. Here we present precision photometry for 6 WASP planets acquired during their transit windows. We perform a Markov Chain Monte Carlo (MCMC) analysis for each planet and combine these data with previous measurements to redetermine the period and ephemerides for these planets. These observations provide recent mid-transit times which are useful for scheduling future observations. Our results improve the ephemerides of WASP-4b, WASP-5b and WASP-6b and reduce the uncertainties on the mid-transit time for WASP-29b. We also confirm the orbital, stellar and planetary parameters of all 6 systems.Comment: 12 pages; 6 figures; 9 tables; accepted for publication in AJ; two references updated and minor improvements made to match the version to be publishe

    Securing the legacy of TESS through the care and maintenance of TESS planet ephemerides

    Get PDF
    Much of the science from the exoplanets detected by the TESS mission relies on precisely predicted transit times that are needed for many follow-up characterization studies. We investigate ephemeris deterioration for simulated TESS planets and find that the ephemerides of 81% of those will have expired (i.e. 1σ\sigma mid-transit time uncertainties greater than 30 minutes) one year after their TESS observations. We verify these results using a sample of TESS planet candidates as well. In particular, of the simulated planets that would be recommended as JWST targets by Kempton et al. (2018), ∌\sim80% will have mid-transit time uncertainties >> 30 minutes by the earliest time JWST would observe them. This rapid deterioration is driven primarily by the relatively short time baseline of TESS observations. We describe strategies for maintaining TESS ephemerides fresh through follow-up transit observations. We find that the longer the baseline between the TESS and the follow-up observations, the longer the ephemerides stay fresh, and that 51% of simulated primary mission TESS planets will require space-based observations. The recently-approved extension to the TESS mission will rescue the ephemerides of most (though not all) primary mission planets, but the benefits of these new observations can only be reaped two years after the primary mission observations. Moreover, the ephemerides of most primary mission TESS planets (as well as those newly discovered during the extended mission) will again have expired by the time future facilities such as the ELTs, Ariel and the possible LUVOIR/OST missions come online, unless maintenance follow-up observations are obtained.Comment: 16 pages, 10 figures, accepted to AJ; main changes are cross-checking results against the sample of real TOIs, and addressing the impact of the TESS extended missio

    The Reddest Quasars

    Full text link
    In a survey of quasar candidates selected by matching the FIRST and 2MASS catalogs, we have found two extraordinarily red quasars. FIRST J013435.7-093102 is a 1 Jy source at z=2.216 and has B-K > 10, while FIRST J073820.1+275045 is a 2.5 mJy source at z=1.985 with B-K = 8.4. FIRST J073820.1+275045 has strong absorption lines of MgII and CIV in the rest frame of the quasar and is highly polarized in the rest frame ultraviolet, strongly favoring the interpretation that its red spectral energy distribution is caused by dust reddening local to the quasar. FIRST J073820.1+275045 is thus one of the few low radio-luminosity, highly dust-reddened quasars known. The available observational evidence for FIRST J013435.7-093102 leads us to conclude that it too is reddened by dust. We show that FIRST J013435.7-093102 is gravitationally lensed, increasing the number of known lensed, extremely dust-reddened quasars to at least three, including MG0414-0534 and PKS1830-211. We discuss the implications of whether these objects are reddened by dust in the host or lensing galaxies. If reddened by their local environment, then we estimate that between 10 and 20% of the radio-loud quasar population is reddened by dust in the host galaxy. The discovery of FIRST J073820.1+275045 and objects now emerging from X-ray surveys suggests the existence of an analogous radio-quiet red quasar population. Such objects will be entirely missed by standard radio or optical quasar surveys. If dust in the lensing galaxies is primarily responsible for the extreme redness of the lensed quasars, then an untold number of gravitationally lensed quasars are being overlooked.Comment: AASTEX 24 pp., 7 figs; accepted by ApJ. See also the preprint astro-ph/0107435 by Winn et al., who independently discovered that J013435.7-093102 is gravitationally lense
    • 

    corecore