10,264 research outputs found

    Reentrant nu = 1 quantum Hall state in a two-dimensional hole system

    Full text link
    We report the observation of a reentrant quantum Hall state at the Landau level filling factor nu = 1 in a two-dimensional hole system confined to a 35-nm-wide (001) GaAs quantum well. The reentrant behavior is characterized by a weakening and eventual collapse of the nu = 1 quantum Hall state in the presence of a parallel magnetic field component B||, followed by a strengthening and reemergence as B|| is further increased. The robustness of the nu = 1 quantum Hall state during the transition depends strongly on the charge distribution symmetry of the quantum well, while the magnitude of B|| needed to invoke the transition increases with the total density of the system

    Dynamic regimes of fluids simulated by multiparticle-collision dynamics

    Get PDF
    We investigate the hydrodynamic properties of a fluid simulated with a mesoscopic solvent model. Two distinct regimes are identified, the `particle regime' in which the dynamics is gas-like, and the `collective regime' where the dynamics is fluid-like. This behavior can be characterized by the Schmidt number, which measures the ratio between viscous and diffusive transport. Analytical expressions for the tracer diffusion coefficient, which have been derived on the basis of a molecular-chaos assumption, are found to describe the simulation data very well in the particle regime, but important deviations are found in the collective regime. These deviations are due to hydrodynamic correlations. The model is then extended in order to investigate self-diffusion in colloidal dispersions. We study first the transport properties of heavy point-like particles in the mesoscopic solvent, as a function of their mass and number density. Second, we introduce excluded-volume interactions among the colloidal particles and determine the dependence of the diffusion coefficient on the colloidal volume fraction for different solvent mean-free paths. In the collective regime, the results are found to be in good agreement with previous theoretical predictions based on Stokes hydrodynamics and the Smoluchowski equation.Comment: 15 pages, 15 figure

    HASH(0x563d43f53db0)

    Get PDF
    HASH(0x563d442146b8)HASH(0x563d43e33070

    Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge

    Full text link
    Shallow acceptor levels in Si/Ge/Si quantum well heterostructures are characterized by resonant tunneling spectroscopy in the presence of high magnetic fields. In a perpendicular magnetic field we observe a linear Zeeman splitting of the acceptor levels. In an in-plane field, on the other hand, the Zeeman splitting is strongly suppressed. This anisotropic Zeeman splitting is shown to be a consequence of the huge light hole-heavy hole splitting caused by a large biaxial strain and a strong quantum confinement in the Ge quantum well.Comment: 5 figures, 4 page

    Anisotropic Fermi Contour of (001) GaAs Holes in Parallel Magnetic Fields

    Full text link
    We report a severe, spin-dependent, Fermi contour anisotropy induced by parallel magnetic field in a high-mobility (001) GaAs two-dimensional hole system. Employing commensurability oscillations created by a unidirectional, surface-strain-induced, periodic potential modulation, we directly probe the anisotropy of the two spin subband Fermi contours. Their areas are obtained from the Fourier transform of the Shubnikov-de Haas oscillations. Our findings are in semi-quantitative agreement with the results of parameter-free calculations of the energy bands.Comment: 4 pages, 4 figure

    Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures

    Full text link
    We generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by various spin-dependent interactions. This formalism yields the spin-resolved shot noise power for different experimental measurement setups--with ferromagnetic source and ferromagnetic or normal drain electrodes--whose evaluation for the diffusive multichannel quantum wires with the Rashba (SO) spin-orbit coupling shows how spin decoherence and dephasing lead to substantial enhancement of charge current fluctuations (characterized by Fano factors >1/3> 1/3). However, these processes and the corresponding shot noise increase are suppressed in narrow wires, so that charge transport experiments measuring the Fano factor F↑→↑↓F_{\uparrow \to \uparrow \downarrow} in a ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of phase-coherence of transported spin--we predict a one-to-one correspondence between the magnitude of the spin polarization vector and F↑→↑↓F_{\uparrow \to \uparrow \downarrow}.Comment: 8 pages, 3 figure; enhanced with 2 new figure

    Magnetoconductance of the quantum spin Hall state

    Full text link
    We study numerically the edge magnetoconductance of a quantum spin Hall insulator in the presence of quenched nonmagnetic disorder. For a finite magnetic field B and disorder strength W on the order of the bulk gap E_g, the conductance deviates from its quantized value in a manner which appears to be linear in |B| at small B. The observed behavior is in qualitative agreement with the cusp-like features observed in recent magnetotransport measurements on HgTe quantum wells. We propose a dimensional crossover scenario as a function of W, in which for weak disorder W < E_g the edge liquid is analogous to a disordered spinless 1D quantum wire, while for strong disorder W > E_g, the disorder causes frequent virtual transitions to the 2D bulk, where the originally 1D edge electrons can undergo 2D diffusive motion and 2D antilocalization.Comment: 5 pages, 3 figure

    Living with Oxygen

    Get PDF
    Work on the electronic structures of metal–oxo complexes began in Copenhagen over 50 years ago. This work led to the prediction that tetragonal multiply bonded transition metal–oxos would not be stable beyond the iron–ruthenium–osmium oxo wall in the periodic table and that triply bonded metal–oxos could not be protonated, even in the strongest Brønsted acids. In this theory, only double bonded metal–oxos could attract protons, with basicities being a function of the electron donating ability of ancillary ligands. Such correlations of electronic structure with reactivity have gained importance in recent years, most notably owing to the widespread recognition that high-valent iron–oxos are intermediates in biological reactions critical to life on Earth. In this Account, we focus attention on the oxygenations of inert organic substrates by cytochromes P450, as these reactions involve multiply bonded iron–oxos. We emphasize that P450 iron–oxos are strong oxidants, so strong that they would destroy nearby amino acids if substrates are not oxygenated rapidly; it is our view that these high-valent iron–oxos are such dangerous reactive oxygen species that Nature surely found ways to disable them. Looking more deeply into this matter, mainly by examining many thousands of structures in the Protein Data Bank, we have found that P450s and other enzymes that require oxygen for function have chains of tyrosines and tryptophans that extend from active-site regions to protein surfaces. Tyrosines are near the heme active sites in bacterial P450s, whereas tryptophan is closest in most human enzymes. High-valent iron–oxo survival times taken from hole hopping maps range from a few nanoseconds to milliseconds, depending on the distance of the closest Trp or Tyr residue to the heme. In our proposed mechanism, multistep hole tunneling (hopping) through Tyr/Trp chains guides the damaging oxidizing hole to the protein surface, where it can be quenched by soluble protein or small molecule reductants. As the Earth’s oxygenic atmosphere is believed to have developed about 2.5 billion years ago, the increase in occurrence frequency of tyrosine and tryptophan since the last universal evolutionary ancestor may be in part a consequence of enzyme protective functions that developed to cope with the environmental toxin, O_2

    Invariant expansion for the trigonal band structure of graphene

    Full text link
    We present a symmetry analysis of the trigonal band structure in graphene, elucidating the transformational properties of the underlying basis functions and the crucial role of time-reversal invariance. Group theory is used to derive an invariant expansion of the Hamiltonian for electron states near the K points of the graphene Brillouin zone. Besides yielding the characteristic k-linear dispersion and higher-order corrections to it, this approach enables the systematic incorporation of all terms arising from external electric and magnetic fields, strain, and spin-orbit coupling up to any desired order. Several new contributions are found, in addition to reproducing results obtained previously within tight-binding calculations. Physical ramifications of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional result
    • …
    corecore