9,955 research outputs found

    Performance analysis of grazing incidence imaging systems

    Get PDF
    An exact expression relating the coordinates of a point on the incident ray, a point of reflection from an arbitrary surface, and a point on the reflected ray is derived. The exact relation is then specialized for the case of grazing incidence, and first order and third order systematic analyses are carried out for a single reflective surface and then for a combination of two surfaces. The third order treatment yields a complete set of primary aberrations for single element and two element systems. The importance of a judicious choice for a coordinate system in showing field curvature to clearly be the predominant aberration for a two element system is discussed. The validity of the theory is verified through comparisons with the exact ray trace results for the case of the telescope

    Tunneling between Dilute GaAs Hole Layers

    Full text link
    We report interlayer tunneling measurements between very dilute two-dimensional GaAs hole layers. Surprisingly, the shape and temperature-dependence of the tunneling spectrum can be explained with a Fermi liquid-based tunneling model, but the peak amplitude is much larger than expected from the available hole band parameters. Data as a function of parallel magnetic field reveal additional anomalous features, including a recurrence of a zero-bias tunneling peak at very large fields. In a perpendicular magnetic field, we observe a robust and narrow tunneling peak at total filling factor νT=1\nu_T=1, signaling the formation of a bilayer quantum Hall ferromagnet.Comment: Revised to include additional data, new discussion

    Static inverters which sum a plurality of waves Patent

    Get PDF
    Describing static inverter with single or multiple phase outpu

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    The Effect of Spin Splitting on the Metallic Behavior of a Two-Dimensional System

    Full text link
    Experiments on a constant-density two-dimensional hole system in a GaAs quantum well reveal that the metallic behavior observed in the zero-magnetic-field temperature dependence of the resistivity depends on the symmetry of the confinement potential and the resulting spin-splitting of the valence band

    Two Anderson impurities in a 2D host with Rashba spin-orbit interaction

    Full text link
    We have studied the two-dimensional two-impurity Anderson model with additional Rashba spin-orbit interaction by means of the modified perturbation theory. The impurity Green's functions we have constructed exactly reproduce the first four spectral moments. We discuss the height and the width of the even/odd Kondo peaks as functions of the inter-impurity distance and the Rashba energy ERE_R (the strength of the Rashba spin-orbit interaction). For small impurity separations the Kondo temperature shows a non-monotonic dependence on ERE_R being different in the even and the odd channel. We predict that the Kondo temperature has only almost linear dependence on ERE_R and not an exponential increase with ERE_RComment: To be published in Phys. Rev.

    Lateral spin-orbit interaction and spin polarization in quantum point contacts

    Full text link
    We study ballistic transport through semiconductor quantum point contact systems under different confinement geometries and applied fields. In particular, we investigate how the {\em lateral} spin-orbit coupling, introduced by asymmetric lateral confinement potentials, affects the spin polarization of the current. We find that even in the absence of external magnetic fields, a variable {\em non-zero spin polarization} can be obtained by controlling the asymmetric shape of the confinement potential. These results suggest a new approach to produce spin polarized electron sources and we study the dependence of this phenomenon on structural parameters and applied magnetic fields. This asymmetry-induced polarization provides also a plausible explanation of our recent observations of a 0.5 conductance plateau (in units of 2e2/h2e^2/h) in quantum point contacts made on InAs quantum-well structures. Although our estimates of the required spin-orbit interaction strength in these systems do not support this explanation, they likely play a role in the effects enhanced by electron-electron interactions.Comment: Summited to PRB (2009

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Spin precession and alternating spin polarization in spin-3/2 hole systems

    Full text link
    The spin density matrix for spin-3/2 hole systems can be decomposed into a sequence of multipoles which has important higher-order contributions beyond the ones known for electron systems [R. Winkler, Phys. Rev. B \textbf{70}, 125301 (2004)]. We show here that the hole spin polarization and the higher-order multipoles can precess due to the spin-orbit coupling in the valence band, yet in the absence of external or effective magnetic fields. Hole spin precession is important in the context of spin relaxation and offers the possibility of new device applications. We discuss this precession in the context of recent experiments and suggest a related experimental setup in which hole spin precession gives rise to an alternating spin polarization.Comment: 4 pages, 2 figures, to appear in Physical Review Letter

    Quantum gravity and the Coulomb potential

    Full text link
    We apply a singularity resolution technique utilized in loop quantum gravity to the polymer representation of quantum mechanics on R with the singular -1/|x| potential. On an equispaced lattice, the resulting eigenvalue problem is identical to a finite difference approximation of the Schrodinger equation. We find numerically that the antisymmetric sector has an energy spectrum that converges to the usual Coulomb spectrum as the lattice spacing is reduced. For the symmetric sector, in contrast, the effect of the lattice spacing is similar to that of a continuum self-adjointness boundary condition at x=0, and its effect on the ground state is significant even if the spacing is much below the Bohr radius. Boundary conditions at the singularity thus have a significant effect on the polymer quantization spectrum even after the singularity has been regularized.Comment: 10 pages, 5 figures. v2: Minor presentational changes. One data point added in Table
    corecore