research

Lateral spin-orbit interaction and spin polarization in quantum point contacts

Abstract

We study ballistic transport through semiconductor quantum point contact systems under different confinement geometries and applied fields. In particular, we investigate how the {\em lateral} spin-orbit coupling, introduced by asymmetric lateral confinement potentials, affects the spin polarization of the current. We find that even in the absence of external magnetic fields, a variable {\em non-zero spin polarization} can be obtained by controlling the asymmetric shape of the confinement potential. These results suggest a new approach to produce spin polarized electron sources and we study the dependence of this phenomenon on structural parameters and applied magnetic fields. This asymmetry-induced polarization provides also a plausible explanation of our recent observations of a 0.5 conductance plateau (in units of 2e2/h2e^2/h) in quantum point contacts made on InAs quantum-well structures. Although our estimates of the required spin-orbit interaction strength in these systems do not support this explanation, they likely play a role in the effects enhanced by electron-electron interactions.Comment: Summited to PRB (2009

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020