356 research outputs found

    Sound predictability as a higher-order cue in auditory scene analysis

    Get PDF
    A major challenge for the auditory system is to disentangle signals emitted by two or more sound sources that are active in a temporally interleaved manner (sequential stream segregation). Besides distinct characteristics of the individual signals (e.g., their timbre, location, and pitch), one important cue for distinguishing the sound sources is how their emitted signals unfold over time. It seems intuitively plausible that signals that unfold predictably with respect to their acoustic features and time-points of occurrence, such as the repetitive signature of a train moving on the rails, can be more readily identified as originating from one sound source. Based on this rationale, predictive elements have successfully been incorporated into computational models of auditory scene analysis for many years

    Reconceptualising Conservation: Towards Updating a Section of the District Plan for Driftsands

    Get PDF
    With the threat of Climate change combined with rapid urban expansion, the threat to natural systems is increasingly dire (Korten, 2022). Historically, the entities of nature and people have long been pitted against each other within mainstream conservation (Kiwango & Mabele, 2022). Conservation has often been seen as a tool for the elite to control land and land use, often at the expense of marginalised communities (Kepe & Mollett, 2018). However, with the increasing threat to protected areas, there has been an emergence of alternative conservation strategies, including convivial and decolonial conservation. The dissertation will utilise the Driftsands Area as a case study to consider and investigate alternative conservation methods with a particular focus on water management. The site has seen the encroachment of people into the Nature Reserve, which has degraded the space leading to the initiation of the process of de-proclamation of the site (WCG, 2021). The needs and priories of people and nature seem in direct conflict, where setters are in need of land to settle however, this is threatening the ecosystems in the space and also posing a threat to people as some setters have moved into the flood zone (WCG, 2021). There is thus a need to consider this site as a case study to rethinking conservation. The site provides an opportunity for planners to reconsider alternative methods of conservation. Therefore, the aim of the study is to introduce a layer of the sub-district plan that includes concepts that allow for people and nature to be protected together within the site and gives special consideration to protecting the valuable ecosystem systems in the area, notably the water systems (Kuils River and Wetlands) in this space. The case study of Driftsands will be supported by desktop research, a site visit and expert interviewees in the space to introduce and develop alternative methods to conserve the site. The study showed that there are alternative methods to protect nature and people; importantly, in Driftsands, the flood zone can be introduced as a promoted rather than a protected area, namely by introducing concepts such as a multi-use urban park and identifying areas for relocation of the settlements at risk in the flood zone. The layer of the sub-district plan for Driftsands can serve as a base late for future plans. This research can contribute to the various case studies and studies around alternative conservation methods and aim to add to the various examples of sites and cases that utilised the imminent de-proclamation as an opportunity to rethink and reconceptualise urban conservation

    Crystal structure of the high-pressure phase of the oxonitridosilicate chloride Ce4[Si4O3 + xN7 − x]Cl1 − xOx, x≃0.2

    Get PDF
    The structural compression mechanism of Ce4[Si4O3 + xN7 − x]Cl1 − xOx, x≃ 0.2, was investigated by in situ single-crystal synchrotron X-ray diffraction at pressures of 3.0, 8.5 and 8.6 GPa using the diamond–anvil cell technique. On increasing pressure the low-pressure cubic structure first undergoes only minor structural changes. Between 8.5 and 8.6 GPa a first-order phase transition occurs, accompanied by a change of the single-crystal colour from light orange to dark red. The main structural mechanisms, leading to a volume reduction of about 5% at the phase transition, are an increase in and a rearrangement of the Ce coordination, the loss of the Ce2, Ce3 split position, and a bending of some of the inter-polyhedral Si—N—Si angles in the arrangement of the corner-sharing Si tetrahedra. The latter is responsible for the short c axis of the orthorhombic high-pressure structure compared with the cell parameter of the cubic low-pressure structure

    High-Pressure Phase Transition of the Oxonitridosilicate Chloride Ce4[Si4O3+xN7-x]Cl1-xOx with x = 0.12 and 0.18

    Get PDF
    The high-pressure behaviour of the oxonitridosilicate chlorides Ce4[Si4O3þxN7-x]Cl1-xOx, x = 0.12 and 0.18, is investigated by in situ powder synchrotron X-ray diffraction. Pressures up to 28 GPa are generated using the diamond-anvil cell technique. A reversible phase transition of first order occurs at pressures between 8 and 10 GPa. Within this pressure range the high- and the low-pressure phases are observed concomitantly. At the phase transition the unit cell volume is reduced by about 5%, and the cubic symmetry (space group P213) is reduced to orthorhombic (space group P212121) following a translationengleiche group-subgroup relationship of index 3. A fit of a third-order Birch-Murnaghan equation of state to the p-V data results in a bulk modulus B0 = 124(5) GPa with its pressure derivative B0 = 5(1) at V0 = 1134.3(4) Å3 for the low-pressure phase and in B0 = 153(10) GPa with B0 = 3.0(6) at V0 = 1071(3) Å3 for the high-pressure phase. The orthorhombic phase shows an anisotropic axial compression with the a axis (which is the shortest axis) being more compressible (k(a) = 0.0143(4) 1/GPa) than the b and c axes (k(b) = 0.0045(2), k(c) = 0.0058(2) 1/GPa). The experimental results confirm an earlier prediction of the pressureinduced instability of isotypic Ce4[Si4O4N6]O, and also show that the bulk modulus was predicted reasonably well

    Modulation-frequency acts as a primary cue for auditory stream segregation

    Get PDF
    In our surrounding acoustic world sounds are produced by different sources and interfere with each other before arriving to the ears. A key function of the auditory system is to provide consistent and robust descriptions of the coherent sound groupings and sequences (auditory objects), which likely correspond to the various sound sources in the environment. This function has been termed auditory stream segregation. In the current study we tested the effects of separation in the frequency of amplitude modulation on the segregation of concurrent sound sequences in the auditory stream-segregation paradigm (van Noorden 1975). The aim of the study was to assess 1) whether differential amplitude modulation would help in separating concurrent sound sequences and 2) whether this cue would interact with previously studied static cues (carrier frequency and location difference) in segregating concurrent streams of sound. We found that amplitude modulation difference is utilized as a primary cue for the stream segregation and it interacts with other primary cues such as frequency and location difference

    Different roles of similarity and predictability in auditory stream segregation

    Get PDF
    Sound sources often emit trains of discrete sounds, such as a series of footsteps. Previously, two dif¬ferent principles have been suggested for how the human auditory system binds discrete sounds to¬gether into perceptual units. The feature similarity principle is based on linking sounds with similar characteristics over time. The predictability principle is based on linking sounds that follow each other in a predictable manner. The present study compared the effects of these two principles. Participants were presented with tone sequences and instructed to continuously indicate whether they perceived a single coherent sequence or two concurrent streams of sound. We investigated the influence of separate manipulations of similarity and predictability on these perceptual reports. Both grouping principles affected perception of the tone sequences, albeit with different characteristics. In particular, results suggest that whereas predictability is only analyzed for the currently perceived sound organization, feature similarity is also analyzed for alternative groupings of sound. Moreover, changing similarity or predictability within an ongoing sound sequence led to markedly different dynamic effects. Taken together, these results provide evidence for different roles of similarity and predictability in auditory scene analysis, suggesting that forming auditory stream representations and competition between alter¬natives rely on partly different processes

    Feature predictability flexibly supports auditory stream segregation or integration

    Get PDF
    Many sound sources emit series of discrete sounds. Auditory perception must bind these sounds together (stream integration) while separating them from sounds emitted by other sources (stream segregation). One cue for identifying successive sounds that belong together is the predictability between their feature values. Previous studies have demonstrated that independent predictable patterns appearing separately in two interleaved sound sequences support perceptual segregation. The converse case, whether a joint predictable pattern in a mixture of interleaved sequences supports perceptual integration, has not yet been put to a rigorous empirical test. This was mainly due to difficulties in manipulating the predictability of the full sequence independently of the predictability of the interleaved subsequences. The present study implemented such an independent manipulation. Listeners continuously indicated whether they perceived a tone sequence as integrated or segregated, while predictable patterns set up to support one or the other percept were manipulated without the participants’ knowledge. Perceptual reports demonstrate that predictability supports stream segregation or integration depending on the type of predictable pattern that is present in the sequence. The effects of predictability were so pronounced as to qualitatively flip perception from predominantly (62%) integrated to predominantly (73%) segregated. These results suggest that auditory perception flexibly responds to encountered regular patterns, favoring predictable perceptual organizations over unpredictable ones. Besides underlining the role of predictability as a cue within auditory scene analysis, the present design also provides a general framework that accommodates previous investigations focusing on sub-comparisons within the present set of experimental manipulations. Results of intermediate conditions shed light on why some previous studies have obtained little to no effects of predictability on auditory scene analysis

    Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: An event-related potential (ERP) study

    Get PDF
    In two experiments, we assessed the effects of combining different cues of concurrent sound segregation on the object-related negativity (ORN) and the P400 event-related potential components. Participants were presented with sequences of complex tones, half of which contained some manipulation: One or two harmonic partials were mistuned, delayed, or presented from a different location than the rest. In separate conditions, one, two, or three of these manipulations were combined. Participants watched a silent movie (passive listening) or reported after each tone whether they perceived one or two concurrent sounds (active listening). ORN was found in almost all conditions except for location difference alone during passive listening. Combining several cues or manipulating more than one partial consistently led to sub-additive effects on the ORN amplitude. These results support the view that ORN reflects an integrated, feature-unspecific assessment of the auditory system regarding the contribution of two sources to the incoming sound

    Regularity extraction from non-adjacent sounds

    Get PDF
    The regular behavior of sound sources helps us to make sense of the auditory environment. Regular patterns may, for instance, convey information on the identity of a sound source (such as the acoustic signature of a train moving on the rails). Yet typically, this signature overlaps in time with signals emitted from other sound sources. It is generally assumed that auditory regularity extraction cannot operate upon this mixture of signals because it only finds regularities between adjacent sounds. In this view, the auditory environment would be grouped into separate entities by means of readily available acoustic cues such as separation in frequency and location. Regularity extraction processes would then operate upon the resulting groups. Our new experimental evidence challenges this view. We presented two interleaved sound sequences which overlapped in frequency range and shared all acoustic parameters. The sequences only differed in their underlying regular patterns. We inserted deviants into one of the sequences to probe whether the regularity was extracted. In the first experiment, we found that these deviants elicited the mismatch negativity (MMN) component. Thus the auditory system was able to find the regularity between the non-adjacent sounds. Regularity extraction was not influenced by sequence cohesiveness as manipulated by the relative duration of tones and silent inter-tone-intervals. In the second experiment, we showed that a regularity connecting non-adjacent sounds was discovered only when the intervening sequence also contained a regular pattern, but not when the intervening sounds were randomly varying. This suggests that separate regular patterns are available to the auditory system as a cue for identifying signals coming from distinct sound sources. Thus auditory regularity extraction is not necessarily confined to a processing stage after initial sound grouping, but may precede grouping when other acoustic cues are unavailable
    corecore