13,632 research outputs found

    Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems

    Full text link
    We report measurements and calculations of the spin-subband depopulation, induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole systems. The results reveal that the shape of the confining potential dramatically affects the values of in-plane magnetic field at which the upper spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the carrier-carrier interaction in 2D hole systems does not significantly enhance the spin susceptibility. We interpret our findings using a multipole expansion of the spin density matrix, and suggest that the suppression of the enhancement is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result

    First results of observations of transient pulsar SAXJ2103.5+4545 with the INTEGRAL observatory

    Full text link
    We present preliminary results of observations of X-ray pulsar SAX J2103.5+4545 with INTEGRAL observatory in Dec 2002. Maps of this sky region in energy bands 3-10, 15-40, 40-100 and 100-200 keV are presented. The source is significantly detected up to energies of ∼100\sim100 keV. The hard X-ray flux in the 15-100 energy band is variable, that could be connected with the orbital phase of the binary system. We roughly reconstructed the source spectrum using its comparison to that of Crab nebula. It is shown that the parameters of the source spectrum in 18-150 keV energy range are compatible with that obtained earlier by RXTE observatoryComment: 5 pages, 4 figures, accepted for publication in the Astronomy Letter

    Negative differential Rashba effect in two-dimensional hole systems

    Full text link
    We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.Comment: 3 pages, 3 figures. To appear in AP

    Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field

    Get PDF
    We study electron transport through a serial double quantum dot with Rashba spin-orbit interaction (SOI) and Zeeman field of amplitude B in presence of local Coulomb repulsion. The linear conductance as a function of a gate voltage Vg equally shifting the levels on both dots shows two B=0 Kondo ridges which are robust against SOI as time-reversal symmetry is preserved. Resulting from the crossing of a spin-up and a spin-down level at vanishing SOI two additional Kondo plateaus appear at finite B. They are not protected by symmetry and rapidly vanish if the SOI is turned on. Left-right asymmetric level-lead couplings and detuned on-site energies lead to a simultaneous breaking of left-right and bonding-anti-bonding state symmetry. In this case the finite-B Kondo ridges in the Vg-B plane are bent with respect to the Vg-axis. For the Kondo ridge to develop different level renormalizations must be compensated by adjusting B.Comment: 8 pages, 5 figures, revised version as publishe

    Theory of Spin Relaxation in Two-Electron Lateral Coupled Si/SiGe Quantum Dots

    Get PDF
    Highly accurate numerical results of phonon-induced two-electron spin relaxation in silicon double quantum dots are presented. The relaxation, enabled by spin-orbit coupling and the nuclei of 29^{29}Si (natural or purified abundance), are investigated for experimentally relevant parameters, the interdot coupling, the magnetic field magnitude and orientation, and the detuning. We calculate relaxation rates for zero and finite temperatures (100 mK), concluding that our findings for zero temperature remain qualitatively valid also for 100 mK. We confirm the same anisotropic switch of the axis of prolonged spin lifetime with varying detuning as recently predicted in GaAs. Conditions for possibly hyperfine-dominated relaxation are much more stringent in Si than in GaAs. For experimentally relevant regimes, the spin-orbit coupling, although weak, is the dominant contribution, yielding anisotropic relaxation rates of at least two order of magnitude lower than in GaAs.Comment: 11 pages, 10 figure

    INTEGRAL spectral variability study of the atoll 4U 1820-30: first detection of hard X-ray emission

    Full text link
    We study the 4-200 keV spectral and temporal behaviour of the low mass X-ray binary 4U 1820-30 with INTEGRAL during 2003-2005. This source as been observed in both the soft (banana) and hard (island) spectral states. A high energy tail, above 50 keV, in the hard state has been observed for the first time. This places the source in the category of X-ray bursters showing high-energy emission. The tail can be modeled as a soft power law component, with the photon index of ~2.4, on top of thermal Comptonization emission from a plasma with the electron temperature of kT_e~6 keV and optical depth of \tau~4. Alternatively, but at a lower goodness of the fit, the hard-state broad band spectrum can be accounted for by emission from a hybrid, thermal-nonthermal, plasma. During this monitoring the source spent most of the time in the soft state, usual for this source, and the >~4 keV spectra are represented by thermal Comptonization with kT_e~3 keV and \tau~6-7.Comment: 14 pages, 4 figures, accepted for publication by Ap

    Weak antilocalization in high mobility Ga(x)In(1-x)As/InP two-dimensional electron gases with strong spin-orbit coupling

    Get PDF
    We have studied the spin-orbit interaction in a high mobility two-dimensional electron gas in a GaInAs/InP heterostructure as a function of an applied gate voltage as well as a function of temperature. Highly sensitive magnetotransport measurements of weak antilocalization as well as measurements of Shubnikov--de Haas oscillations were performed in a wide range of electron sheet concentrations. In our samples the electron transport takes place in the strong spin precession regime in the whole range of applied gate voltages, which is characterized by the spin precession length being shorter than the elastic mean free path. The magnitude of the Rashba spin-orbit coupling parameter was determined by fitting the experimental curves by a simulated quantum conductance correction according to a model proposed recently by Golub [Phys. Rev. B 71, 235310 (2005)]. A comparison of the Rashba coupling parameter extracted using this model with the values estimated from the analysis of the beating pattern in the Shubnikov--de Haas oscillations showed a good agreement.Comment: 5 pages, 5 figures, accepted for publication in Phys.Rev.

    Coexistence in a One-Dimensional Cyclic Dominance Process

    Get PDF
    Cyclic (rock-paper-scissors-type) population models serve to mimic complex species interactions. Focusing on a paradigmatic three-species model with mutations in one dimension, we observe an interplay between equilibrium and non-equilibrium processes in the stationary state. We exploit these insights to obtain asymptotically exact descriptions of the emerging reactive steady state in the regimes of high and low mutation rates. The results are compared to stochastic lattice simulations. Our methods and findings are potentially relevant for the spatio-temporal evolution of other non-equilibrium stochastic processes.Comment: 4 pages, 4 figures and 2 pages of Supplementary Material. To appear in Physical Review
    • …
    corecore