308 research outputs found

    Analyzing consumer-related nitrogen flows: A case study on food and material use in Austria

    Get PDF
    Nitrogen budgets cover pools and flows of nitrogen (N) contained in human-made goods and compounds, wich may potentially affect the global nitrogen cycle and in consequence the human environment. Acknowledging the importance of food and other agricultural products, this paper additionally investigates frequently neglected flows of N related to consumers and estimates their magnitude, using Austria in 2010 as an example. Specifically, N in non-food industrial products (synthetic & natural polymers, wood & paper products, waste), and N related to pets, gardens, and energy use is considered. Over the last five decades, both food and material consumption have increased distinctly. While food supply accounts for 52% of total directly consumer-related nitrogen inflows covered in this study (66,000t Na^1), also material products account for a considerable share of 28% (36,000t Na^1). N application in gardens (12%) and N in pet food (7%) do also play a role. Quantified outflows are human excretion (54%), food waste (13%), garden waste (16%), material waste (7%) and waste from pets (10%). The detected balance surplus of 34,000t Na^1, corresponding to 27% of total inflows, points to some accumulation of N in the form of durable consumer goods and to potentially missing flows. The analysis focusses on the apparent knowledge gaps. Especially flows involving material products are poorly understood and would require better understanding of nitrogen contents of products and of waste. This indicates that improvements may be possible by providing more complete nitrogen budgets in the future that cover all environmental pools

    Geographical variation in terrestrial nitrogen budgets across Europe

    Get PDF
    Nitrogen (N) budgets of agricultural systems give important information for assessing the impact of N inputs on the environment, and identify levers for action

    Potentials and Costs for Mitigation of Non-CO2 Greenhouse Gases in Annex 1 Countries: Version 2.0

    Get PDF
    This report documents the specific methodology of IIASA's GAINS model on methane, nitrous oxide and fluorinated gases that has been used for comparing mitigation efforts across Annex I Parties. More details are available at gains.iiasa.ac.at

    Nitrogen in current European policies

    Get PDF
    Europe, and especially the European Union (EU), has many governmental policy measures aimed at decreasing unwanted reactive nitrogen (N_r) emissions from combustion, agriculture and urban wastes. Many of these policy measures have an "effects-based approach", and focus on single N_r compounds, single sectors and either on air or waters. This chapter addresses the origin, objectives and targets of EU policy measures related to N_r emissions, considers which instruments are being used to implement the policies and briefly discusses the effects of the policy measures

    Non-CO2 greenhouse gas emissions in the EU-28 from 2005 to 2050: GAINS model methodology

    Get PDF
    This report presents the GAINS model methodology for the 2016 Reference scenario for emissions of non-CO2 greenhouse gases (GHGs), mitigation potentials and costs in the EU-28 with projections to 2050. The non-CO2 emission scenarios form part of the work under the EUCLIMIT2 project1. The project aims at producing projections for all emissions of GHGs in the EU-28 consistent with the macroeconomic and population projections presented in EC/DG ECFIN (2015). Four modelling groups were involved in the work: PRIMES (National Technical University of Athens), CAPRI (Bonn University), GLOBIOM (IIASA-ESM program) and GAINS (IIASA-MAG program). This report focuses on describing the methodology of the GAINS model for the estimation of the non-CO2 GHGs, i.e., methane (CH4), nitrous oxide (N2O) and three groups of fluorinated gases (F-gases) viz. hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6). The report is structured as follows. Section 2 presents the general GAINS methodology for estimating draft non-CO2 greenhouse gas emissions for EU-28. Sections 3, 4 and 5 describe in detail the methodology applied for estimation of emissions by source for CH4, N2O and Fgases, respectively. Finally, Section 6 provides a comparison between emissions reported by member states to the UNFCCC for years 2005 and 2010 and the emissions estimated by the GAINS model for the same years

    Nitrogen footprints: Past, present and future

    Get PDF
    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity's consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems

    N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    Get PDF
    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N<sub>2</sub>O), has been re-examined, using known global atmospheric removal rates and concentration growth of N<sub>2</sub>O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3&ndash;5% from newly fixed N to N<sub>2</sub>O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35&ndash;0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N<sub>2</sub>O emission from biofuel production is calculated in "CO<sub>2</sub>-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO<sub>2</sub>, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N<sub>2</sub>O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment

    The contribution of non-CO2 greenhouse gas mitigation to achieving long-term temperature goals

    Get PDF
    In the latest (fifth) assessment from the Intergovernmental Panel on Climate Change (IPCC) non-CO2 emssions accounted for 28% of total GHG emissions in 2010, when measured on the basis of their global warming potential (relative to CO2) over a 100-year and nitrous oxide (N2O) accounting for about half of all non-CO2 GHGs. With population and incomes increasing, especially in emerging economies, these emissions could grow significantly in the future. Other major sources of non-CO2 GHGs are fugitive CH4 from the extraction and distribution of fossil fuels, N2O from industrial production of nitric and adipic acid, as well as fluorinated gases (F-gases) from a range of industrial manufacturing and product uses. This paper analyses the emissions and cost impacts of mitigation of non-CO2 greenhouse gases (GHGs) at a global level, in scenarios which are focused on meeting a range of long-term temperature goals (LTTGs). The paper demonstrates how an integrated assessment model (TIAM-Grantham) representing CO2 emissions (and their mitigation) from the fossil fuel combustion and industrial sectors is coupled with a model covering non-CO2 emissions (GAINS) in order to provide a complete picture of GHG emissions in a reference scenario in which there is no mitigation of either CO2 or non-CO2 gases, as well as in scenarios in which both CO2 and non-CO2 gases are mitigated in order to achieve different LTTGs

    Synthesis and review: tackling the nitrogen management challenge: from global to local scales

    Get PDF
    One of the 'grand challenges' of this age is the anthropogenic impact exerted on the nitrogen cycle. Issues of concern range from an excess of fixed nitrogen resulting in environmental pressures for some regions, while for other regions insufficient fixed nitrogen affects food security and may lead to health risks. To address these issues, nitrogen needs to be managed in an integrated fashion, at a variety of scales (from global to local). Such management has to be based on a thorough understanding of the sources of reactive nitrogen released into the environment, its deposition and effects. This requires a comprehensive assessment of the key drivers of changes in the nitrogen cycle both spatially, at the field, regional and global scale and over time. In this focus issue, we address the challenges of managing reactive nitrogen in the context of food production and its impacts on human and ecosystem health. In addition, we discuss the scope for and design of management approaches in regions with too much and too little nitrogen. This focus issue includes several contributions from authors who participated at the N2013 conference in Kampala in November 2013, where delegates compiled and agreed upon the 'Kampala Statement-for-Action on Reactive Nitrogen in Africa and Globally'. These contributions further underline scientifically the claims of the 'Kampala Statement', that simultaneously reducing pollution and increasing nitrogen available in the food system, by improved nitrogen management offers win-wins for environment, health and food security in both developing and developed economies. The specific messages conveyed in the Kampala Statement focus on improving nitrogen management (I), including the reduction of nitrogen losses from agriculture, industry, transport and energy sectors, as well as improving waste treatment and informing individuals and institutions (II). Highlighting the need for innovation and increased awareness among stakeholders (III) and the identification of policy and technology solutions to tackle global nitrogen management issues (IV), this will enable countries to fulfil their regional and global commitments

    Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983–2014)

    Get PDF
    A long-term record of inorganic ion concentrations in wet and dry deposition sampled from snow packs at two high altitude glaciers was used to assess impacts of air pollution on remote sites in central Europe. Sampling points were located at Wurtenkees and Goldbergkees near the Sonnblick Observatory (3106 m above sea level), a background site for measuring the status of the atmosphere in Austria's Eastern Alps. Sampling was carried out every spring at the end of the winter accumulation period in the years 1983–2014. Concentrations of major ions (NH4+, SO42−, NO3−, Ca2+, Mg2+, K+, Na+ and Cl−) were determined using ion chromatography (IC) as well as atomic absorption spectroscopy (AAS) in the earlier years. Concentration of H+ was calculated via the measured pH of the samples. Trends in deposition and concentration were analysed for all major ions within the period from 1983 to 2014 using Kendall's tau rank correlation coefficient. From 1983 to 2014, total ion concentration declined ∼25%, i.e. solutions became ∼25% more dilute, indicating reduced acidic atmospheric deposition, even at high altitude in winter snow. SO42− and NO3− concentrations decreased significantly by 70% and 30%, respectively, accompanied by a 54% decrease of H+ concentrations. Ionic concentrations in snowpack were dominated by H+ and SO42− in the earliest decade measured, whereas they were dominated by Ca2+ by the most recent decade. SO42− and H+ depositions, i.e. concentrations multiplied by volume, also showed a significant decrease of more than 50% at both sites. This reflects the successful emission reductions of the precursor gases SO2 and NOx. Seasonal values with significantly elevated spring concentrations of NH4+, SO42− and H+ compared to fall snow reflects the beginning of vertical mixing during spring. All other ions do not show any seasonality. Source identification of the ions was performed using a principal component analysis (PCA). One anthropogenic cluster (SO42−, NO3− and NH4+) coming from road traffic or fossil fuel combustion and animal husbandry, one crustal cluster (Ca2+, Mg2+) originating from local geological input or Saharan dust events as well as one cluster of unknown origin with episodic character (Na+, K+ and Cl−) was found
    • …
    corecore