3 research outputs found

    Comparison of temperature-dependent calibration methods of an instrument to measure OH and HOâ‚‚ radicals using laser-induced fluorescence spectroscopy

    Get PDF
    Laser-induced fluorescence (LIF) spectroscopy has been widely applied to fieldwork measurements of OH radicals and HO2, following conversion to OH, over a wide variety of conditions, on different platforms and in simulation chambers. Conventional calibration of HOx (OH + HO2) instruments has mainly relied on a single method, generating known concentrations of HOx from H2O vapour photolysis in a flow of zero air impinging just outside the sample inlet (SHOx = CHOx . [HOx ], where SHOx is the observed signal and CHOx is the calibration factor). The fluorescence assay by gaseous expansion (FAGE) apparatus designed for HOx measurements in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) at the University of Leeds has been used to examine the sensitivity of FAGE to external gas temperatures (266–348 K). The conventional calibration methods give the temperature dependence of COH (relative to the value at 293 K) of (0.0059±0.0015) K−1 and CHO2 of (0.014±0.013) K−1. Errors are 2σ . COH was also determined by observing the decay of hydrocarbons (typically cyclohexane) caused by OH reactions giving COH (again, relative to the value at 293 K) of (0.0038 ± 0.0007) K−1. Additionally, CHO2 was determined based on the second-order kinetics of HO2 recombination with the temperature dependence of CHO2 , relative to 293 K being (0.0064 ± 0.0034) K−1. The temperature dependence of CHOx depends on the HOx number density, quenching, the relative population of the probed OH rotational level and HOx transmission from the inlet to the detection axis. The first three terms can be calculated and, in combination with the measured values of CHOx, show that HOx transmission increases with temperature. Comparisons with other instruments and the implications of this work are discussed

    Direct measurements of OH and other product yields from the HO2 + CH3C(O)O2 reaction

    Get PDF
    The reaction CH3C(O)O2 +HO2 → CH3C(O)OOH+O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293±2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37±0.10, α(R5b) = 0.12±0.04 and α(R5c) = 0.51±0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4±0.4)×10−11 cm3 molecule−1 s−1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6–8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx

    Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere

    Get PDF
    Criegee intermediates are reactive intermediates that are implicated in transforming the composition of Earth’s troposphere and in the formation of secondary organic aerosol, impacting Earth’s radiation balance, air quality and human health. Yet, direct identification of their signatures in the field remains elusive. Here, from particulate and gas-phase mass-spectrometric measurements in the Amazon rainforest, we identify sequences of masses consistent with the expected signatures of oligomerization of the CH2OO Criegee intermediate, a process implicated in ozonolysis-driven aerosol formation. We assess the potential contributions of oligomerization through laboratory ozonolysis experiments, direct kinetic studies of Criegee intermediate reactions, and high-level theoretical calculations. Global atmospheric models built on these kinetics results indicate that Criegee intermediate chemistry may play a larger role in altering the composition of Earth’s troposphere than is captured in current atmospheric models, especially in areas of high humidity. However, the models still capture only a relatively small fraction of the observed signatures, suggesting considerable underestimates of Criegee intermediate concentrations and reactivity and/or the dominance of other, presently uncharacterized, oxidation mechanisms. Resolving the remaining uncertainties in emission inventories and the effects of atmospheric water vapour on key chemical reactions will be required to definitively assess the role of Criegee intermediate oligomerization reactions
    corecore