73 research outputs found

    Role of vibrational entropy in the stabilization of the high-temperature phases of iron

    Full text link
    The phonon dispersions of the bcc and fcc phases of pure iron ({\alpha}-Fe, {\gamma}-Fe and {\delta}-Fe) at ambient pressure were investigated close to the respective phase transition temperatures. In the open bcc structure the transverse phonons along T1 [{\xi}{\xi}0] and T1 [{\xi}{\xi}2{\xi}] are of particularly low energy. The eigenvectors of these phonons correspond to displacements needed for the transformation to the fcc {\gamma}-phase. Especially these phonons, but also all other phonons soften considerably with increasing temperature. Comparing thermodynamic properties of the fcc and the two bcc phases it is shown that the high temperature bcc phase is stabilized predominantly by vibrational entropy, whereas for the stabilization of the fcc phase electronic entropy provides an equal contribution.Comment: to appear in Physical Review

    Интерпретация авторского замысла через анализ аллюзивных онимов (на материале английского языка)

    Get PDF
    В статье анализируются аллюзивные онимы как средство интерпретации авторского замысла. Аллюзивные онимы обогащают художественный текст и дают авторам возможность передать информацию в некой зашифрованной форме. Процесс декодирования может быть интересным и увлекательным, однако при отсутствии знаний прецедентных текстов интерпретация авторского замысла может оказаться неполной

    Balanced hydroxyethylstarch (HES 130/0.4) impairs kidney function in-vivo without inflammation

    Get PDF
    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansio

    Incorporating new approach methodologies into regulatory nonclinical pharmaceutical safety assessment

    Get PDF
    New approach methodologies (NAMs) based on human biology enabletheassessment of adverse biological effects of pharmaceuticals and other chemicals. Currently,however, it is unclear how NAMsshould be usedduring drug development to improve human safety evaluation. A series of 5 workshops with 13 international experts (regulators, preclinical scientists and NAMs developers) were conducted to identify feasible NAMsand to discuss how to exploit them in specific safety assessmentcontexts. Participants generated four‘maps’of how NAMs can be exploited in the safety assessment ofthe liver, respiratory, cardiovascular,and central nervous systems. Each map showsrelevant end points measured, tools used (e.g.,cells, assays, platforms), and highlights gaps where furtherdevelopment and validation of NAMs remainsnecessary. Each map addresses the fundamental scientific requirements for the safety assessment of that organ system, providing users with guidance on the selection of appropriate NAMs. In addition to generating the maps, participants offered suggestions for encouraging greater NAM adoption within drug development and their inclusion in regulatory guidelines. A specific recommendation was that pharmaceutical companies should be more transparent about how they use NAMs in-house. As well as giving guidance for the fourorgan systems, the maps providea template that could be used for additional organ safety testing contexts.Moreover, their conversion to an interactive format would enable users to drill down to the detail necessary to answer specific scientific and regulatory questions. 1IntroductionExtensive nonclinical safety studies are undertaken on new pharmaceuticals prior to and alongside clinical trials. Their purpose is to identify and understand the toxic effects of thecompoundin order to determine whether its anticipated benefit versusrisk profile justifies clinical evaluation and, if so, to inform the design and monitoring of clinical studies. The nonclinical safety studies are mandated by regulatory guidelines and include a variety of safety pharmacologyand toxicology investigations.Safety pharmacology studies aimto determinewhether pharmaceuticalscause on-or off-target effects on biological processes which can affect the function of critical organ systems (e.g.,cardiovascular, respiratory, gastrointestinal,and central nervous systems)and to assess potency, which is needed to assess safety margins versushuman clinical drug exposure. Safety pharmacology studiesalso help informthe selectionof follow-on investigations that can aid human risk assessmentand may provide insight into mechanismswhich underlie any effectsthat arise in humans.Multiple leading pharmaceutical companies (e.g.,AstraZeneca, GlaxoSmithKline, Novartis,and Pfizer) have outlined the advantages provided by in vitrosafety pharmacological profiling, including early identification of off-target interactionsandthe prediction ofclinical side effects that may be missed in animalstudies, and have highlighted that these studies enable much more cost-effective and rapid profiling of large numbers of compounds than animal procedures (Bowes et al., 2012).Toxicology studies evaluate systemic organ toxicities, behavioraleffects, reproductive and developmental toxicology, genetic toxicology,eye irritancy and dermal sensitization. They include single and repeat dose studies in rodent and non-rodentanimal species, which identify target organs, assessseverity andreversibility,and define dose-response and no observed adverse effect levels. These are critical parameters which are essential for regulatory decision-makingon whether the compound can be progressed into clinical trials and if so, estimation ofa suitable starting dose,maximum dose, dose escalation regime,andany non-standard clinical safety monitoringthat may be needed.Toxicity observedinnonclinical animal safety studies is an important cause of the high attrition rate of candidate drugs prior to clinicaltrials that occurs inmultiple pharmaceutical companies(Cook et al., 2014).However, many drugs cause clinically serious adverseeffects in humans which are not detectedin animals(Bailey et al., 2015). For example, human drug induced liver injury(DILI),which is not detected in animal safety studies,is animportant cause of attrition late in clinical development, failed licensing and/or of restrictive drug labelling(Watkins, 2011). Attrition due to toxicity observed in animals and/or in humans isanimportant cause of the high failure rate of clinical drug development(Cook et al., 2014; Watkins, 2011; Thomas et al., 2021).New approach methodologies (NAMs)includemethods which predict and evaluate biological processes by which pharmaceuticals may elicit desirable pharmacological effects and/or may cause undesirable toxicity. Many different types of NAMs have been described. Theseinclude simple in vitrocell-based tests, more complex organotypic or microphysiologicalsystems (MPS)/organ-on-a-chipdevices,and whole human tissuesmaintained ex vivo. Interpretation ofthe invivorelevance of the data providedby these methods is complementedbycomputational toolswhichsimulate and predict in vivodrug disposition and kinetics, in particular physiologically based pharmacokinetic (PBPK) models. Accurate in vitroto in vivoextrapolation isfurther aided by human low-dose testing and microdosing studies (phase 0 testing), which provide precise data on systemic human drug exposure and kineticsin vivo

    The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier

    Get PDF
    Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB

    The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2.

    Get PDF
    Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
    corecore