104 research outputs found
Sprachröhren des Zeitgeistes
Friedrich Schillers Wallenstein-Trilogie und das Demetrius-Fragment werden in dieser Arbeit in ihrer Rolle als Verhandlungsräume des zeitgenössischen Herrschaftsdiskurses um 1800 untersucht. Auf eine Fixierung auf die historische Figur Napoleons wird dabei absichtlich verzichtet, um somit den Blick auf das gesamte diskursive Feld um 1800 zu erweitern. Gleichzeitig wird versucht, die wichtigsten Themen des politischen Diskurses um 1800 zu skizzieren, wobei das Phänomen Masse als das Herzstück der politischen Debatte ausgemacht wird, von dem sich die anderen, hier behandelten Themengebiete entspinnen. Im ersten Abschnitt wird auf Schillers Auseinandersetzung mit der Sprache und mit den Kollektivsymbolen der Französischen Revolution im Wallenstein eingegangen. Weiters werden die Ideologie der Französischen Revolution, der revolutionäre Freiheitsbegriff und das Thema der Interdependenz moderner Macht sowie deren Verhandlung im Wallenstein und im Demetrius analysiert. Im zweiten Abschnitt werden die moderne Diktatur, der Republikbegriff und der Führerkult, die in beiden Dramen behandelt werden, unter die Lupe genommen. Dennoch ist Schiller nicht als politischer Schriftsteller, sondern lediglich als politisch hochinteressierter Autor zu verstehen.In this paper the Wallenstein Trilogy and the Demetrius Fragment are considered as a stage for a political debate where the arguments of the late 18th century are mentioned and showcased by Friedrich Schiller. A fixation upon the historical person Napoleon Bonaparte will be deliberately avoided in order to allow comprehensive coverage of the political discourse of Schiller’s time. As the discursive core of this political debate, the phenomenon of the mass marks the centerpiece for all the other political topics which are reflected upon in these two dramas. In the first part the revolutionary “speak” and Schiller’s work with the political metaphors from the late 18th century will be analyzed. Furthermore, the ideology of the revolution, the revolutionary term of freedom, the topic of the new born interdependence of modern power, as well as Schiller’s work with these subjects in both dramas, will be scrutinized. In the second part, I write about modern dictatorship, the republic, the leader-cult and how these topics are intermingled with the stories of Wallenstein and Demetrius. However, this doesn’t mean that Schiller has to be regarded as a political writer, but rather as an author highly interested in political subjects
Reduced Isotype Switching in Splenic B Cells from Mice Deficient in Mismatch Repair Enzymes
Mice deficient in various mismatch repair (MMR) enzymes were examined to determine whether this repair pathway is involved in antibody class switch recombination. Splenic B cells from mice deficient in Msh2, Mlh1, Pms2, or Mlh1 and Pms2 were stimulated in culture with lipopolysaccharide (LPS) to induce immunoglobulin (Ig)G2b and IgG3, LPS and interleukin (IL)-4 to induce IgG1, or LPS, anti–δ-dextran, IL-4, IL-5, and transforming growth factor (TGF)-β1 to induce IgA. After 4 d in culture, cells were surface stained for IgM and non-IgM isotypes and analyzed by FACS®. B cells from MMR-deficient mice show a 35–75% reduction in isotype switching, depending on the isotype and on the particular MMR enzyme missing. IgG2b is the most affected, reduced by 75% in Mlh1-deficient animals. The switching defect is not due to a lack of maturation of the B cells, as purified IgM+IgD+ B cells show the same reduction. MMR deficiency had no effect on cell proliferation, viability, or apoptosis, as detected by [3H]thymidine incorporation and by propidium iodide staining. The reduction in isotype switching was demonstrated to be at the level of DNA recombination by digestion-circularization polymerase chain reaction (DC-PCR). A model of the potential role for MMR enzymes in class switch recombination is presented
Involvement of Exo1b in DNA damage-induced apoptosis
Apoptosis is essential for the maintenance of inherited genomic integrity. During DNA damage-induced apoptosis, mechanisms of cell survival, such as DNA repair are inactivated to allow cell death to proceed. Here, we describe a role for the mammalian DNA repair enzyme Exonuclease 1 (Exo1) in DNA damage-induced apoptosis. Depletion of Exo1 in human fibroblasts, or mouse embryonic fibroblasts led to a delay in DNA damage-induced apoptosis. Furthermore, we show that Exo1 acts upstream of caspase-3, DNA fragmentation and cytochrome c release. In addition, induction of apoptosis with DNA-damaging agents led to cleavage of both isoforms of Exo1. The cleavage of Exo1 was mapped to Asp514, and shown to be mediated by caspase-3. Expression of a caspase-3 cleavage site mutant form of Exo1, Asp514Ala, prevented formation of the previously observed fragment without any affect on the onset of apoptosis. We conclude that Exo1 has a role in the timely induction of apoptosis and that it is subsequently cleaved and degraded during apoptosis, potentially inhibiting DNA damage repair
MUS81 Generates a Subset of MLH1-MLH3–Independent Crossovers in Mammalian Meiosis
Two eukaryotic pathways for processing double-strand breaks (DSBs) as crossovers have been described, one dependent on the MutL homologs Mlh1 and Mlh3, and the other on the structure-specific endonuclease Mus81. Mammalian MUS81 has been implicated in maintenance of genomic stability in somatic cells; however, little is known about its role during meiosis. Mus81-deficient mice were originally reported as being viable and fertile, with normal meiotic progression; however, a more detailed examination of meiotic progression in Mus81-null animals and WT controls reveals significant meiotic defects in the mutants. These include smaller testis size, a depletion of mature epididymal sperm, significantly upregulated accumulation of MLH1 on chromosomes from pachytene meiocytes in an interference-independent fashion, and a subset of meiotic DSBs that fail to be repaired. Interestingly, chiasmata numbers in spermatocytes from Mus81−/− animals are normal, suggesting additional integrated mechanisms controlling the two distinct crossover pathways. This study is the first in-depth analysis of meiotic progression in Mus81-nullizygous mice, and our results implicate the MUS81 pathway as a regulator of crossover frequency and placement in mammals
Lack of MSH2 involvement differentiates V(D)J recombination from other non-homologous end joining events
V(D)J recombination and class switch recombination are the two DNA rearrangement events used to diversify the mouse and human antibody repertoires. While their double strand breaks (DSBs) are initiated by different mechanisms, both processes use non-homologous end joining (NHEJ) in the repair phase. DNA mismatch repair elements (MSH2/MSH6) have been implicated in the repair of class switch junctions as well as other DNA DSBs that proceed through NHEJ. MSH2 has also been implicated in the regulation of factors such as ATM and the MRN (Mre11, Rad50, Nbs1) complex, which are involved in V(D)J recombination. These findings led us to examine the role of MSH2 in V(D)J repair. Using MSH2(−/−) and MSH2(+/+) mice and cell lines, we show here that all pathways involving MSH2 are dispensable for the generation of an intact pre-immune repertoire by V(D)J recombination. In contrast to switch junctions and other DSBs, the usage of terminal homology in V(D)J junctions is not influenced by MSH2. Thus, whether the repair complex for V(D)J recombination is of a canonical NHEJ type or a separate microhomology-mediated-end joining (MMEJ) type, it does not involve MSH2. This highlights a distinction between the repair of V(D)J recombination and other NHEJ reactions
Msh2 ATPase Activity Is Essential for Somatic Hypermutation at A-T Basepairs and for Efficient Class Switch Recombination
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase–mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2−/− mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase–generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a “knockin” mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2−/− mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2−/− mice than to Msh2−/− mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR
Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and T-tubule Abnormalities
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cells. Recently, we identified a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans that is due to mutations within the coding sequence of the human caveolin-3 gene (3p25). These LGMD-1C mutations lead to an approximately 95% reduction in caveolin-3 protein expression, i.e. a caveolin-3 deficiency. Here, we created a caveolin-3 null (CAV3 -/-) mouse model, using standard homologous recombination techniques, to mimic a caveolin-3 deficiency. We show that these mice lack caveolin-3 protein expression and sarcolemmal caveolae membranes. In addition, analysis of skeletal muscle tissue from these caveolin-3 null mice reveals: (i) mild myopathic changes; (ii) an exclusion of the dystrophin-glycoprotein complex from lipid raft domains; and (iii) abnormalities in the organization of the T-tubule system, with dilated and longitudinally oriented T-tubules. These results have clear mechanistic implications for understanding the pathogenesis of LGMD-1C at a molecular level
Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2–MSH3 or MSH2–MSH6) or crossing over (MSH4–MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4–MSH5. The second complex involves MLH3 together with MSH2–MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2−/− males, but not females, providing an explanation for the sexual dimorphism seen in Pms2−/− mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2–MSH3 and is decreased in Msh2−/− and Msh3−/− mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis
APC1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development
This is the publisher's version, also available electronically from "http://genesdev.cshlp.org".The adenomatous polyposis coli (APC) gene is considered as the true gatekeeper of colonic epithelial proliferation: It is mutated in the majority of colorectal tumors, and mutations occur at early stages of tumor development in mouse and man. These mutant proteins lack most of the seven 20-amino-acid repeats and all SAMP motifs that have been associated with down-regulation of intracellular β-catenin levels. In addition, they lack the carboxy-terminal domains that bind to DLG, EB1, and microtubulin. APC also appears to be essential in development because homozygosity for mouse Apcmutations invariably results in early embryonic lethality. Here, we describe the generation of a mouse model carrying a targeted mutation at codon 1638 of the mouse Apc gene, Apc1638T, resulting in a truncated Apc protein encompassing three of the seven 20 amino acid repeats and one SAMP motif, but missing all of the carboxy-terminal domains thought to be associated with tumorigenesis. Surprisingly, homozygosity for the Apc1638T mutation is compatible with postnatal life. However, homozygous mutant animals are characterized by growth retardation, a reduced postnatal viability on the B6 genetic background, the absence of preputial glands, and the formation of nipple-associated cysts. Most importantly,Apc 1638T/1638T animals that survive to adulthood are tumor free. Although the full complement of Apc1638T is sufficient for proper β-catenin signaling, dosage reductions of the truncated protein result in increasingly severe defects in β-catenin regulation. The SAMP motif retained in Apc1638T also appears to be important for this function as shown by analysis of the Apc1572T protein in which its targeted deletion results in a further reduction in the ability of properly controlling β-catenin/Tcf signaling. These results indicate that the association with DLG, EB1, and microtubulin is less critical for the maintenance of homeostasis by APC than has been suggested previously, and that proper β-catenin regulation by APC appears to be required for normal embryonic development and tumor suppression
- …