427 research outputs found

    Cellular Structures of Carbon Nanotubes in a Polymer Matrix Improve Properties Relative to Composites with Dispersed Nanotubes

    Get PDF
    A new processing method has been developed to combine a polymer and single wall carbon nanotubes (SWCNTs) to form electrically conductive composites with desirable rheological and mechanical properties. The process involves coating polystyrene (PS) pellets with SWCNTs and then hot pressing to make a contiguous, cellular SWCNT structure. By this method, the electrical percolation threshold decreases and the electrical conductivity increases significantly as compared to composites with a well-dispersed SWCNTs. For example, a SWCNT / PS composite with 0.5 wt% nanotubes and made by this coated particle process (CPP) has an electrical conductivity of ~ 3 x 10-4 S/cm, while a well-dispersed composite made by a coagulation method with the same SWCNT amount has an electrical conductivity of only ~ 10-8 S/cm. The rheological properties of the composite with a macroscopic cellular SWCNT structure are comparable to PS, while the well-dispersed composite exhibits a solid-like behavior, indicating that composites made by this new CPP method are more processable. In addition, the mechanical properties of the CPP-made composite decrease only slightly, as compared with PS. Relative to the common appoach of seeking better dispersion, this new fabrication method provides an important alternative means to higher electrical conductivity in SWCNT / polymer composites. Our straightforward particle coating and pressing method avoids organic solvents and is suitable for large-scale, inexpensive processing using a wide variety of polymer and nanoparticles

    Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1 to S phase transition and identifies a conserved family of proteins

    Get PDF
    Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation

    Mitotic Spindle Form and Function

    Get PDF
    The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine

    Simulations and Generalized Model of the Effect of Filler Size Dispersity on Electrical Percolation in Rod Networks

    Get PDF
    We present a three-dimensional simulation of electrical conductivity in isotropic, polydisperse rod networks from which we determine the percolation threshold (Ï•c). Existing analytical models that account for size dispersity are formulated in the slender-rod limit and are less accurate for predicting Ï•c in composites with rods of modest L/D. Using empirical approximations from our simulation data, we generalized the excluded volume percolation model to account for both finite L/D and size dispersity, providing a solution for Ï•c of polydisperse rod networks that is quantitatively accurate across the entire L/D range

    Pennsylvania Folklife Vol. 19, No. 2

    Get PDF
    • Powwowing in Berks County • Belsnickling in Paxtonville • The Folk Tradition of the Sweetheart Tree • Pigpens and Piglore in Rural Pennsylvania • Gravestones and Ostentation: A Study of Five Delaware County Cemeteries • Notes on Eighteenth-Century Emigration to the British Colonies • A Siegerland Emigrant List of 1738 • Local Place Names: Folk-Cultural Questionnaire No. 14https://digitalcommons.ursinus.edu/pafolklifemag/1038/thumbnail.jp

    Polymer and spherical nanoparticle diffusion in nanocomposites

    Get PDF
    Nanoparticle and polymer dynamics in nanocomposites containing spherical nanoparticles were investigated by means of molecular dynamics simulations. We show that the polymer diffusivity decreases with nanoparticle loading due to an increase of the interfacial area created by nanoparticles, in the polymer matrix. We show that small sized nanoparticles can diffuse much faster than that predicted from the Stokes-Einstein relation in the dilute regime. We show that the nanoparticle diffusivity decreases at higher nanoparticle loading due to nanoparticle-polymer interface. Increase of the nanoparticle radius slows the nanoparticle diffusion

    Temperature dependence in interatomic potentials and an improved potential for Ti

    Get PDF
    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.Comment: CCP 201

    Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    Get PDF
    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.
    • …
    corecore