59 research outputs found
Anti-influenza Hyperimmune Immunoglobulin Enhances Fc-functional Antibody Immunity during Human Influenza Infection
BACKGROUND: New treatments for severe influenza are needed. Passive transfer of influenza-specific hyperimmune pooled immunoglobulin (Flu-IVIG) boosts neutralising antibody responses to past strains in influenza-infected subjects. The effect of Flu-IVIG on antibodies with Fc-mediated functions, which may target diverse influenza strains, is unclear.
METHODS: We studied the capacity of Flu-IVIG, relative to standard IVIG, to bind to Fc receptors and mediate antibody-dependent cellular cytotoxicity in vitro. The effect of Flu-IVIG infusion, compared to placebo infusion, was examined in serial plasma samples from 24 subjects with confirmed influenza infection in the INSIGHT FLU005 pilot study.
RESULTS: Flu-IVIG contains higher concentrations of Fc-functional antibodies than IVIG against a diverse range of influenza hemagglutinins. Following infusion of Flu-IVIG into influenza-infected subjects, a transient increase in Fc-functional antibodies was present for 1-3 days against infecting and non-infecting strains of influenza.
CONCLUSIONS: Flu-IVIG contains antibodies with Fc-mediated functions against influenza virus and passive transfer of Flu-IVIG increases anti-influenza Fc-functional antibodies in the plasma of influenza-infected subjects. Enhancement of Fc-functional antibodies to a diverse range of influenza strains suggests that Flu-IVIG infusion could prove useful in the context of novel influenza virus infections, when there may be minimal or no neutralising antibodies in the Flu-IVIG preparation
A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite
Background- The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings - Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance - We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite
The Human Fc gamma RII (CD32) Family of Leukocyte FcR in Health and Disease
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer
Cloning and characterization of an immunoglobulin A Fc receptor from cattle
Here, we describe the cloning, sequencing and characterization of an immunoglobulin A (IgA) Fc receptor from cattle (bFcαR). By screening a translated EST database with the protein sequence of the human IgA Fc receptor (CD89) we identified a putative bovine homologue. Subsequent polymerase chain reaction (PCR) amplification confirmed that the identified full-length cDNA was expressed in bovine cells. COS-1 cells transfected with a plasmid containing the cloned cDNA bound to beads coated with either bovine or human IgA, but not to beads coated with bovine IgG2 or human IgG. The bFcαR cDNA is 873 nucleotides long and is predicted to encode a 269 amino-acid transmembrane glycoprotein composed of two immunoglobulin-like extracellular domains, a transmembrane region and a short cytoplasmic tail devoid of known signalling motifs. Genetically, bFcαR is more closely related to CD89, bFcγ2R, NKp46, and the KIR and LILR gene families than to other FcRs. Moreover, the bFcαR gene maps to the bovine leucocyte receptor complex on chromosome 18. Identification of the bFcαR will aid in the understanding of IgA–FcαR interactions, and may facilitate the isolation of FcαR from other species
Boosting of Markers of Fc gamma Receptor Function in Anti-HIV Antibodies During Structured Treatment Interruption
Anti-HIV envelope (Env) antibodies elicit important Fc receptor functions, including FcγRIIIa-mediated natural killer cell killing of opsonized infected targets. How these antibodies evolve during HIV infection and treatment remains poorly understood. We describe changes in anti-HIV Env IgG using longitudinal samples from seroconverter subjects treated soon after infection and later during periods of structured treatment interruption (STI). Our well-validated dimeric rsFcγR binding assays combine effects of opsonizing antibody subclasses, epitopes, and geometries to provide a measure of FcγR (Fcγ receptor)-mediated functionality. IgG1 anti-Env titers diminished rapidly during antiretroviral therapy (ART; t1/2 3.0 ± 0.8 months), while the dimeric rsFcγRIIIa activity persisted longer (t1/2 33 ± 11 months), suggesting that there is maintenance of functional antibody specificities within the diminished pool of anti-HIV Env Abs. The initial antibody response to infection in two subjects was characterized by approximately fivefold higher FcγRIIIa compared with FcγRIIa binding activity. Uncoupling of FcγRIIa and FcγRIIIa activities may be a distinct feature of the early antibody response that preferentially engages FcγRIIIa-mediated effector functions. Two to three STI cycles, even with low viremia, were sufficient to boost dimeric FcγR activity in these seroconverter subjects. We hypothesize that increased humoral immunity induced by STI is a desirable functional outcome potentially achievable by therapeutic immunization during ART. We conclude that controlled viral antigen exposure under the protection of suppressive ART may be effective in eliciting FcγR-dependent function in support of viral reactivation and kill strategies
Identification and characterization of macaque CD89 (immunoglobulin A Fc receptor)
The interaction of the immunoglobulin A (IgA) molecule with its specific cellular receptor is necessary to trigger a variety of effector functions able to clear IgA-opsonized antigens. The human IgA-specific Fc receptor, FcαRI or CD89, is expressed on cells of the myeloid lineage. Recently, CD89 homologues have been identified in rats and cattle. Because non-human primates represent well established models for a variety of human diseases and for the testing of immunotherapeutic strategies, we cloned and sequenced cDNAs corresponding to the CD89 gene from rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. Macaque sequences of full-length CD89 consist of five exons of length identical to the corresponding human CD89 exons. The rhesus and cynomolgus macaque derived amino acid sequences are highly homologous to each other (99·3% identity) and exhibit 86·5% and 86·1% identity to the human counterpart, respectively. Transfection of HeLa cells with plasmids containing the cloned macaque cDNAs resulted in the expression of surface molecules recognized by an anti-human CD89 antibody. Five splice variants were identified in rhesus macaques. Three of the five variants are similar to described human CD89 splice variants, whereas two variants have not been described in humans. Three splice variants were identified in cynomolgus macaques. Of the three variants, one is present also in humans and rhesus macaques, whereas the other two are shared with rhesus macaques but not humans. Similarly to the human CD89, macaque CD89 is expressed on myeloid cells from peripheral blood. The characterization of macaque CD89 represents an essential step in establishing a non-human primate model for the testing of immunotherapeutic approaches based on the manipulation of the IgA/CD89 interaction
CytoBas: Precision component-resolved diagnostics for allergy using flow cytometric staining of basophils with recombinant allergen tetramers
BACKGROUND: Diagnostic tests for allergy rely on detecting allergen-specific IgE. Component-resolved diagnostics incorporate multiple defined allergen components to improve the quality of diagnosis and patient care. OBJECTIVE: To develop a new approach for determining sensitization to specific allergen components that utilizes fluorescent protein tetramers for direct staining of IgE on blood basophils by flow cytometry. METHODS: Recombinant forms of Lol p 1 and Lol p 5 proteins from ryegrass pollen (RGP) and Api m 1 from honeybee venom (BV) were produced, biotinylated, and tetramerized with streptavidin-fluorochrome conjugates. Blood samples from 50 RGP-allergic, 41 BV-allergic, and 26 controls were incubated with fluorescent protein tetramers for flow cytometric evaluation of basophil allergen binding and activation. RESULTS: Allergen tetramers bound to and activated basophils from relevant allergic patients but not controls. Direct fluorescence staining of Api m 1 and Lol p 1 tetramers had greater positive predictive values than basophil activation for BV and RGP allergy, respectively, as defined with receiver operator characteristics (ROC) curves. Staining intensities of allergen tetramers correlated with allergen-specific IgE levels in serum. Inclusion of multiple allergens coupled with distinct fluorochromes in a single-tube assay enabled rapid detection of sensitization to both Lol p 1 and Lol p 5 in RGP-allergic patients and discriminated between controls, BV-allergic, and RGP-allergic patients. CONCLUSION: Our novel flow cytometric assay, termed CytoBas, enables rapid and reliable detection of clinically relevant allergic sensitization. The intensity of fluorescent allergen tetramer staining of basophils has a high positive predictive value for disease, and the assay can be multiplexed for a component-resolved and differential diagnostic test for allergy
Antibody glycosylation correlates with disease progression in SIV-<i>Mycobacterium tuberculosis</i> coinfected cynomolgus macaques
OBJECTIVES: Tuberculosis (TB) remains a substantial cause of morbidity and mortality among people living with human immunodeficiency virus (HIV) worldwide. However, the immunological mechanisms associated with the enhanced susceptibility among HIV-positive individuals remain largely unknown. METHODS: Here, we used a simian immunodeficiency virus (SIV)/TB-coinfection Mauritian cynomolgus macaque (MCM) model to examine humoral responses from the plasma of SIV-negative (n = 8) and SIV-positive (n = 7) MCM 8-week postinfection with Mycobacterium tuberculosis (Mtb). RESULTS: Antibody responses to Mtb were impaired during SIV coinfection. Elevated inflammatory bulk IgG antibody glycosylation patterns were observed in coinfected macaques early at 8-week post-Mtb infection, including increased agalactosylation (G0) and reduced di-galactosylation (G2), which correlated with endpoint Mtb bacterial burden and gross pathology scores, as well as the time-to-necropsy. CONCLUSION: These studies suggest that humoral immunity may contribute to control of TB disease and support growing literature that highlights antibody Fc glycosylation as a biomarker of TB disease progression
Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques
A considerable body of evidence suggests that Fc-dependent functions improve the capacity of broadly neutralizing antibodies (BnAbs) to protect against and control HIV-1 infection. This phenomenon, however, has not been formally tested in robust cell-associated macaque simian-human immunodeficiency virus (SHIV) models with newer-generation BnAbs. We studied both the WT BnAb PGT121 and a LALA mutant of PGT121 (which has impaired Fc-dependent functions) for their ability to protect pigtail macaques from an i.v. high-dose cell-associated SHIVSF162P3 challenge. We found that both WT and LALA PGT121 completely protected all 12 macaques studied. Further, partial depletion of NK cells, key mediators of Fc-dependent functions, did not abrogate the protective efficacy of PGT121 in 6 macaques. Additionally, in animals with established SHIVSF162P3 infection, SHIV viremia levels were equally rapidly reduced by LALA and WT PGT121. Our studies suggest that the potent neutralizing capacity of PGT121 renders the Fc-dependent functions of the Ab at least partially redundant. These findings have implications for Ab-mediated protection from and control of HIV-1 infection
- …