44 research outputs found

    Geoconservation, history of

    Get PDF
    [Excerto] The word "geoconservation" was probably used for the first time in Tasmania (Australia) in the beginning of the 1990s (Sharples 1993). Sharples, a pioneer of Australian geoconservation, reports that during the period of 1993-1994, the Forestry Commission of Tasmania prepared several reports with preliminary inventories of landforms in the state forests of Tasmania in order to facilitate "the conservation of Earth systems ('Geoconservation')" (Sharples 1993). However, initiatives to protect particular geological and geomorphological features started centuries before, during the seventeenth century. The first example of the protection of geological features dates back to 1668, concerning the protection of the Baumannshöhle cave in the Harz Mountains in Germany (Grube 1994)...info:eu-repo/semantics/publishedVersio

    Inventorying geological heritage in large territories : a methodological proposal applied to Brazil

    Get PDF
    An adequate management of geological heritage by national and regional authorities presupposes the existence of a solid geosites inventory. Unfortunately, this is not the case for many countries. Most often, there is no national inventory at all or the method and criteria used to assess geosites was not adequate. This paper makes an overview of the strengths and weaknesses of the most common procedures to produce a geosite inventory and proposes a methodology particularly adapted for large territories such as Brazil. Nevertheless, this methodological approach can be easily adapted to any other geographical or geological setting, promoting the characterization and conservation of the world's geological heritage.High Level Scholarship Programme of the European Union - Programme AlÎČanFundação para a CiĂȘncia e a Tecnologia (FCT)

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 1.

    Get PDF
    Here in the first part of this publication we discuss the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on the established methods for correlation in the Tithonian/Berriasian interval. This will be followed, in the second part, by an account of the stratigraphic evidence that justifies the locality of TrĂ© Maroua (Hautes-Alpes, SE France) as the proposed GSSP. Here we discuss the possibilities for correlation in the historical J/K boundary interval, and the evolution of thinking on the positioning of the boundary over recent generations, and in relation to research in the last ten years. The Tithonian/Berriasian boundary level is accepted as occurring within magnetosubzone M19n.2n. The detailed distribution of calpionellids has been recorded at numerous sites, tied to magnetostratigraphy, and the base of the calpionellid Alpina Zone is taken to define the base of the Berriasian Stage. This is at a level just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We discuss a wide range of magnetostratigraphic and biostratigraphic data from key localities globally, in the type Berriasian areas of France and wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia etc.). The characteristic datums that typify the J/K boundary interval in Tethys and its extensions are detailed, and the correlative viability of various fossil groups is discussed. The boundary level is correlated to well-known J/K sections globally, and a series of secondary markers and proxies are indicated which assist wider correlation. Particularly significant are the primary basal Berriasian marker, the base of the Alpina Subzone (marked by dominance of small Calpionella alpina, Crassicollaria parvula and Tintinopsella carpathica) and secondary markers bracketing the base of the Calpionella Zone, notably the FOs of the calcareous nannofossil species Nannoconus wintereri (just below the boundary) and the FO of Nannoconus steinmannii minor (just above). Notable proxies for the boundary are: 1) the base of the Arctoteuthis tehamaensis Zone in boreal and subboreal regions, 2) the dated base of the Alpina Subzone at 140.22 ± 0.14 Ma, which also gives a precise age estimate for the system boundary; and 3) the base of radiolarian “unitary zone” 14, which is situated just above the base of the Alpina Subzone

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2

    Get PDF
    In part 1 of this work we discussed the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on prevailing practical methods for correlation in that J/K interval, traditional usage and the consensus over the best boundary markers that had developed in the last forty years. This consensus has developed further, based on the results of multidisciplinary studies on numerous sites over the last decade. Here in Part 2 we give an account of the application of those results by the Berriasian Working Group (ISCS), and present the stratigraphic evidence that justifies the selection of the locality of TrĂ© Maroua (Hautes-Alpes, SE France) as the proposed GSSP. We describe a 45 m-thick section in the Calcaires Blancs vocontiens – that part of the formation covering the calpionellid Chitinoidella, Remanei. Intermedia, Colomi, Alpina, Ferasini, Elliptica and Simplex biozones. The stratigraphic data collected here has been compiled as part of a wider comparative study of complementary Vocontian Basin sites (with localities at Charens, St Bertrand, Belvedere and Le Chouet). Evidence from TrĂ© Maroua thus sits in this substantial regional biostratigraphic and magnetostratigraphic context. For the purposes of the GSSP definition, here we particularly concentrate on the unbroken sequence and biotic markers in the interval immediately below the boundary, the Colomi Subzone (covering circa 675,000 years), and immediately above, the Alpina Subzone (covering circa 725,000 years). Particularly significant fossil datums identified in the TrĂ© Maroua profile are the primary basal Berriasian marker, the base of the Alpina Subzone (a widespread event marked by dominance of small Calpionella alpina, with rare Crassicollaria parvula and Tintinopsella carpathica): the base of the Berriasian Stage is placed at the base of bed 14, which coincides with the base of the Alpina Subzone. Secondary markers bracketing the base of the Calpionella Zone are the FOs of the calcareous nannofossil species Nannoconus wintereri, close below the boundary, and the FO of Nannoconus steinmannii minor, close above. The Tithonian/Berriasian boundary level occurs within M19n.2n, in common with many documented sites, and is just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We present data which is congruent with magnetostratigraphic and biostratigraphic data from other key localities in France and in wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia
), and thus the characteristics and datums identified at TrĂ© Maroua are key for correlation and, in general, they typify the J/K boundary interval in Tethys and connected seas

    The inventory of geological heritage of the state of SĂŁo Paulo, Brazil: Methodological basis, results and perspectives

    Get PDF
    An inventory of geological sites based on solid and clear criteria is a first step for any geoconservation strategy. This paper describes the method used in the geoheritage inventory of the State of SĂŁo Paulo, Brazil, and presents its main results. This inventory developed by the geoscientific community aimed to identify geosites with scientific value in the whole state, using a systematic approach. All 142 geosites representative of 11 geological frameworks were characterised and quantitatively evaluated according to their scientific value and risk of degradation, in order to establish priorities for their future management. An online database of the inventory is under construction, which will be available to be easily consulted and updated by the geoscientific community. All data were made available to the State Geological Institute as the backbone for the implementation of a future state geoconservation strategy.The authors acknowledge the Science Without Borders Programme, Process 075/2012, which supported this study and the SĂŁo Paulo Research Foundation (FAPESP), Process 2011/17261-6. We also thanks C. Mazoca for his help with maps and figures.info:eu-repo/semantics/acceptedVersio

    Geoconservation in Portugal with emphasis on the geomorphological heritage

    No full text
    Geoconservation in Portugal has been gaining impor- tance, particularly during the last decade. The inventory of geosites with international and national scientific relevance is now complete, and the national legislation concerning nature conservation includes the management of geoheritage. Forty-three per cent of the inventoried geosites are geomorphosites, showing the importance of this type of geological heritage in the Portuguese natural heritage. The geoscientific community is slowly recog- nizing geoconservation as an emergent component of the geosciences. The existence of four UNESCO Global Geoparks in Portugal is also an example of the country’s involvement in the international geoconservation scene.(undefined

    Geosites, Classification of

    No full text
    corecore