238 research outputs found

    Developing a data relay network for monitoring hydrologic conditions in south and central Florida

    Get PDF
    There are no author-identified significant results in this report

    Advantages of ERTS data collection system in south Florida

    Get PDF
    There are no author-identified significant results in this report

    Acquisition and processing problem of ERTS data in south Florida

    Get PDF
    There are no author-identified significant results in this report

    Surface water modeling Everglades Water Basin, Florida

    Get PDF
    There are no author-identified significant results in this report

    Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics

    Get PDF
    The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process

    Phasing the 30S ribosomal subunit structure

    Get PDF
    The methods involved in determining the 850 kDa structure of the 30S ribosomal subunit from Thermus thermophilus were in many ways identical to those that are generally used in standard protein crystallography. This paper reviews and analyses the methods that can be used in phasing such large structures and shows that the anomalous signal collected from heavy-atom compounds bound to the RNA is both necessary and sufficient for ab initio structure determination at high resolution. In addition, measures to counter problems with non-isomorphism and radiation decay are described

    Phasing the 30S ribosomal subunit structure

    Get PDF
    The methods involved in determining the 850 kDa structure of the 30S ribosomal subunit from Thermus thermophilus were in many ways identical to those that are generally used in standard protein crystallography. This paper reviews and analyses the methods that can be used in phasing such large structures and shows that the anomalous signal collected from heavy-atom compounds bound to the RNA is both necessary and sufficient for ab initio structure determination at high resolution. In addition, measures to counter problems with non-isomorphism and radiation decay are described

    Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics

    Get PDF
    The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit

    Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics

    Get PDF
    The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit
    • …
    corecore