7 research outputs found

    α-Interferon with very-low-dose donor lymphocyte infusion for hematologic or cytogenetic relapse of chronic myeloid leukemia induces rapid and durable complete remissions and is associated with acceptable graft-versus-host disease

    Get PDF
    Donor lymphocyte infusion (DLI) results in complete cytogenetic remission (CCR) of relapsed chronic-phase chronic myeloid leukemia (CML-CP) after allogeneic stem cell transplantation (SCT) in up to 80% of patients. The main complication of DLI is graft-versus-host disease (GVHD). Decreasing the dose of DLI is associated with less GVHD but also with a longer interval between treatment and CCR. We postulated that combining α-interferon (α-IFN) with DLI would enable us to decrease the dose of DLI, thereby limiting GVHD, and at the same time to decrease the interval between DLI and CCR for patients with either a hematologic or cytogenetic relapse. For molecular relapses, we hypothesized that because of a lower tumor load, very low doses of DLI without α-IFN could be an effective treatment. Two groups of CML-CP patients treated with DLI at a very low dose of 0.5 to 1.0 × 107 mononuclear cells per kilogram, containing 2 to 6 × 106 CD3+ T cells per kilogram, were analyzed: 13 patients with a cytogenetic or a hematologic relapse after allogeneic SCT (group A) were treated with additional α-IFN therapy at a dose of 3 × 106 U 5 d/wk, and 8 patients with a molecular relapse were treated without α-IFN (group B). Twelve patients from group A reached a CCR. The median interval between DLI and CCR was 7 weeks (range, 5-18 weeks) for group A. All patients with a CCR reached complete donor chimerism at a median of 10 weeks after DLI (range, 6-121 weeks). Eleven patients reached molecular remission at a median of 15 weeks after DLI (range, 8-34 weeks). In group B, all patients reached a molecular remission at a median of 14 weeks (range, 12-29 weeks). Five patients from group A developed acute GVHD grade II to IV and extensive chronic GVHD. In group B, 1 patient developed acute GVHD grade II to IV and subsequently developed extensive chronic GVHD. With a median follow-up of 62 months, 10 patients in group A are alive and in continuous CCR. One patient had a molecular relapse, for which she successfully received additional DLI; another patient reached molecular remission only after 5 doses of DLI. Two patients from group A died of a gram-negative sepsis, and 1 died of an acute myocardial infection. In group B, all patients are alive and in molecular remission with a median follow-up of 20 months. One patient's disease progressed but was successfully treated with DLI plus α-IFN. In conclusion, very-low-dose DLI in combination with α-IFN as treatment for cytogenetic or hematologic relapses of CML-CP after allogeneic SCT reduced the interval to obtain a CCR with acceptable GVHD when compared with the literature. Patients with a CCR also reached complete donor chimerism and complete molecular remissions. For patients with a molecular relapse, very-low-dose DLI alone is sufficient to induce molecular remissions in most patients and is associated with limited GVHD

    α-Interferon with very-low-dose donor lymphocyte infusion for hematologic or cytogenetic relapse of chronic myeloid leukemia induces rapid and durable complete remissions and is associated with acceptable graft-versus-host disease

    No full text
    Donor lymphocyte infusion (DLI) results in complete cytogenetic remission (CCR) of relapsed chronic-phase chronic myeloid leukemia (CML-CP) after allogeneic stem cell transplantation (SCT) in up to 80% of patients. The main complication of DLI is graft-versus-host disease (GVHD). Decreasing the dose of DLI is associated with less GVHD but also with a longer interval between treatment and CCR. We postulated that combining α-interferon (α-IFN) with DLI would enable us to decrease the dose of DLI, thereby limiting GVHD, and at the same time to decrease the interval between DLI and CCR for patients with either a hematologic or cytogenetic relapse. For molecular relapses, we hypothesized that because of a lower tumor load, very low doses of DLI without α-IFN could be an effective treatment. Two groups of CML-CP patients treated with DLI at a very low dose of 0.5 to 1.0 × 107 mononuclear cells per kilogram, containing 2 to 6 × 106 CD3+ T cells per kilogram, were analyzed: 13 patients with a cytogenetic or a hematologic relapse after allogeneic SCT (group A) were treated with additional α-IFN therapy at a dose of 3 × 106 U 5 d/wk, and 8 patients with a molecular relapse were treated without α-IFN (group B). Twelve patients from group A reached a CCR. The median interval between DLI and CCR was 7 weeks (range, 5-18 weeks) for group A. All patients with a CCR reached complete donor chimerism at a median of 10 weeks after DLI (range, 6-121 weeks). Eleven patients reached molecular remission at a median of 15 weeks after DLI (range, 8-34 weeks). In group B, all patients reached a molecular remission at a median of 14 weeks (range, 12-29 weeks). Five patients from group A developed acute GVHD grade II to IV and extensive chronic GVHD. In group B, 1 patient developed acute GVHD grade II to IV and subsequently developed extensive chronic GVHD. With a median follow-up of 62 months, 10 patients in group A are alive and in continuous CCR. One patient had a molecular relapse, for which she successfully received additional DLI; another patient reached molecular remission only after 5 doses of DLI. Two patients from group A died of a gram-negative sepsis, and 1 died of an acute myocardial infection. In group B, all patients are alive and in molecular remission with a median follow-up of 20 months. One patient's disease progressed but was successfully treated with DLI plus α-IFN. In conclusion, very-low-dose DLI in combination with α-IFN as treatment for cytogenetic or hematologic relapses of CML-CP after allogeneic SCT reduced the interval to obtain a CCR with acceptable GVHD when compared with the literature. Patients with a CCR also reached complete donor chimerism and complete molecular remissions. For patients with a molecular relapse, very-low-dose DLI alone is sufficient to induce molecular remissions in most patients and is associated with limited GVHD

    Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: A prospective randomized HOVON trial

    No full text
    We evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20+non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine- dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin- cytarabine-dexamethasone) chemotherapy with rituximab (R; R-DHAP arm) were 119 patients (113 evaluable) and to chemotherapy without rituximab (DHAP arm) 120 patients (112 evaluable). Patients in complete remission (CR) and partial remission (PR) after 2 chemotherapy courses were eligible for autologous stem-cell transplantation. After the second chemotherapy cycle, 75% of the patients in the R-DHAP arm had responsive disease (CR or PR) versus 54% in the DHAP arm (P = .01). With a median follow-up of 24 months, there was a significant difference in failure-free survival (FFS24; 50% vs 24% vs, P < .001), and progression free survival (PFS24; 52% vs 31% P < .002) in favor of the R-DHAP arm. Cox-regression analysis demonstrated a significant effect of rituximab treatment on FFS24(HR 0.41, 95% confidence interval [CI] 0.29-0.57 versus 0.51, 95% CI 0.37-0.70) and overall-survival (OS24: HR 0.60 [0.41-0.89] vs 0.76 [0.52-1.10]) when adjusted for time since upfront treatment, age, World Health Organization performance status, and secondary age-adjusted international prognostic index. These results demonstrate improved FFS and PFS for relapsed aggressive B-cell NHLif rituximab is added to the re-induction chemotherapy regimen

    Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients

    No full text
    BACKGROUND: Kidney transplantation has improved survival and quality of life for patients with end-stage renal disease. Despite excellent short-term results due to better and more potent immunosuppressive drugs, long-term survival of transplanted kidneys has not improved accordingly in the last decades. Consequently there is a strong interest in immunosuppressive regimens that maintain efficacy for the prevention of rejection, whilst preserving renal structure and function. In this respect the infusion of mesenchymal stromal cells (MSCs) may be an interesting immune suppressive strategy. MSCs have immune suppressive properties and actively contribute to tissue repair. In experimental animal studies the combination of mammalian target of rapamycin (mTOR) inhibitor and MSCs was shown to attenuate allo immune responses and to promote allograft tolerance. The current study will test the hypothesis that MSC treatment, in combination with the mTOR inhibitor everolimus, facilitates tacrolimus withdrawal, reduces fibrosis and decreases the incidence of opportunistic infections compared to standard tacrolimus dose. METHODS/DESIGN: 70 renal allograft recipients, 18–75 years old, will be included in this Phase II, open label, randomized, non-blinded, prospective, single centre clinical study. Patients in the MSC treated group will receive two doses of autologous bone marrow derived MSCs IV (target 1,5x10(6), Range 1-2x10(6) million MSCs per/kg body weight), 7 days apart, 6 and 7 weeks transplantation in combination with everolimus and prednisolone. At the time of the second MSC infusion tacrolimus will be reduced to 50% and completely withdrawn 1 week later. Patients in the control group will receive everolimus, prednisolone and standard dose tacrolimus. The primary end point is to compare fibrosis by quantitative Sirius Red scoring of MSC treated and untreated groups at 6 months compared to 4 weeks post-transplant. Secondary end points include: composite end point efficacy failure (Biopsy Proven Acute Rejection, graft loss or death); renal function and proteinuria; opportunistic infections; immune monitoring and “subclinical” cardiovascular disease groups by assessing echocardiography in the different treatment groups. DISCUSSION: This study will provide information whether MSCs in combination with everolimus can be used for tacrolimus withdrawal, and whether this strategy leads to preservation of renal structure and function in renal recipients. TRIAL REGISTRATION: NCT02057965
    corecore