1,216 research outputs found

    The magnetite-based receptors in the beak of birds and their role in avian navigation

    Get PDF
    Iron-rich structures have been described in the beak of homing pigeons, chickens and several species of migratory birds and interpreted as magnetoreceptors. Here, we will briefly review findings associated with these receptors that throw light on their nature, their function and their role in avian navigation. Electrophysiological recordings from the ophthalmic nerve, behavioral studies and a ZENK-study indicate that the trigeminal system, the nerves innervating the beak, mediate information on magnetic changes, with the electrophysiological study suggesting that these are changes in intensity. Behavioral studies support the involvement of magnetite and the trigeminal system in magnetoreception, but clearly show that the inclination compass normally used by birds represents a separate system. However, if this compass is disrupted by certain light conditions, migrating birds show 'fixed direction' responses to the magnetic field, which originate in the receptors in the beak. Together, these findings point out that there are magnetite-based magnetoreceptors located in the upper beak close to the skin. Their natural function appears to be recording magnetic intensity and thus providing one component of the multi-factorial 'navigational map' of birds

    Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior

    Get PDF
    To test the hypothesis that single domain magnetite is involved in magnetoreception, we treated Australian silvereyes Zosterops l. lateralis with a strong, brief pulse designed to alter the magnetization of single domain particles. This pulse was administered in the presence of a 1 mT biasing field, either parallel to the direction of the biasing field (PAR group) or antiparallel (ANTI group). In the case of magnetoreceptors based on freely moving single domain particles, the PAR treatment should have little effect, whereas the ANTI treatment should cause remagnetization of the magnetite particles involved in a receptor and could produce a maximum change in that receptor's output for some receptor configurations. Migratory orientation was used as a criterion to assess the effect on the receptor. Before treatment, both groups preferred their normal northerly migratory direction. Exposure to the biasing field alone did not affect their behavior. Treatment with the pulse in the presence of the biasing field caused both the PAR and the ANTI birds to show an axial preference for the east—west axis, with no difference between the two groups. Although these results are in accordance with magnetite-based magnetoreceptors playing a role in migratory orientation, they do not support the hypothesis that single domains in polarity-sensitive receptors are free to move through all solid angles. Possible interpretations, including other arrangements of single domains and superparamagnetic crystals, are discussed

    The influence of magnetic total intensity and inclination on directions preferred by migrating European robins (Erithacus rubecula)

    Get PDF
    The directional orientation of migratory European robins in relation to magnetic cues is analyzed. Major efforts were made to determine what information the birds derive from the fields. It was determined that magnetic fields provide: (1) field intensity which determines whether the magnetic field can be used for orientation, (2) a means by which axial direction may be perceived, and (3) a means by which the bird can find the north direction. The north direction is sensed from the angle between gravity and the magnetic field

    Sensing Magnetic Directions in Birds: Radical Pair Processes Involving Cryptochrome

    Get PDF
    Birds can use the geomagnetic field for compass orientation. Behavioral experiments, mostly with migrating passerines, revealed three characteristics of the avian magnetic compass: (1) it works spontaneously only in a narrow functional window around the intensity of the ambient magnetic field, but can adapt to other intensities, (2) it is an “inclination compass”, not based on the polarity of the magnetic field, but the axial course of the field lines, and (3) it requires short-wavelength light from UV to 565 nm Green. The Radical Pair-Model of magnetoreception can explain these properties by proposing spin-chemical processes in photopigments as underlying mechanism. Applying radio frequency fields, a diagnostic tool for radical pair processes, supports an involvement of a radical pair mechanism in avian magnetoreception: added to the geomagnetic field, they disrupted orientation, presumably by interfering with the receptive processes. Cryptochromes have been suggested as receptor molecules. Cry1a is found in the eyes of birds, where it is located at the membranes of the disks in the outer segments of the UV-cones in chickens and robins. Immuno-histochemical studies show that it is activated by the wavelengths of light that allow magnetic compass orientation in birds

    Quantum probe and design for a chemical compass with magnetic nanostructures

    Full text link
    Magnetic fields as weak as Earth's may affect the outcome of certain photochemical reactions that go through a radical pair intermediate. When the reaction environment is anisotropic, this phenomenon can form the basis of a chemical compass and has been proposed as a mechanism for animal magnetoreception. Here, we demonstrate how to optimize the design of a chemical compass with a much better directional sensitivity simply by a gradient field, e.g. from a magnetic nanostructure. We propose an experimental test of these predictions, and suggest design principles for a hybrid metallic-organic chemical compass. In addition to the practical interest in designing a biomimetic weak magnetic field sensor, our result shows that gradient fields can server as powerful tools to probe spin correlations in radical pair reactions.Comment: 8 pages, 6 figures, comments are welcom

    Troubles and Failures in Interactional Language. Towards a Linguistically Informed Taxonomy

    Full text link
    The goal of this talk is to introduce a systematic research agenda which aims to understand the nature of interaction between humans and artificial conversational agents (CA) (henceforth humanmachine interaction, HMI). Specifically, we shall take an explicit linguistic perspective focusing on linguistically defined variables that are known to influence the flow of conversations among humans (henceforth human-human interaction, HHI).Comment: 3 pages, 3 figures, Part of WTF 23 workshop proceeding

    Light-dependent magnetoreception in birds: increasing intensity of monochromatic light changes the nature of the response

    Get PDF
    BACKGROUND: The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences for other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way. RESULTS: The birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light of low intensity with a quantal flux of 8·10(15 )quanta s(-1 )m(-2), indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference for the east-west axis instead, but they were well oriented in migratory direction under UV of lower intensity. Intensities of above 36·10(15 )quanta s(-1 )m(-2 )of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36·10(15 )quanta s(-1 )m(-2 )to 54 and 72·10(15 )quanta s(-1 )m(-2). CONCLUSION: The specific manifestation of responses in directions other than the migratory direction clearly depends on the ambient light regime. This implies that even when the mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the receptors involved and details of their connections are not yet known; however, a role of the color cones in the processes mediating magnetic input is suggested
    corecore