246 research outputs found

    Los modelos arquitectónicos de Sir John Soane: un catálogo

    Get PDF
    Peer Reviewe

    La maqueta arquitectónica: Barroco inglés

    Get PDF
    Peer Reviewe

    The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using Ionic Liquids

    No full text
    A number of ionic liquids have been shown to be excellent solvents for lignocellulosic biomass processing, and some of these are particularly effective in the production of the versatile chemical building block 5-hydroxymethylfurfural (HMF). In this study, the production of HMF from the simple sugar glucose in ionic liquid media is discussed. Several aspects of the selective catalytic formation of HMF from glucose have been elucidated using metal halide salts in two distinct ionic liquids, 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium hydrogen sulfate as well as mixtures of these, revealing key features for accelerating the desired reaction and suppressing byproduct formation. The choice of ionic liquid anion is revealed to be of particular importance, with low HMF yields in the case of hydrogen sulfate-based salts, which are reported to be effective for HMF production from fructose. The most successful system investigated in this study led to almost quantitative conversion of glucose to HMF (90% in only 30 minutes using 7 mol% catalyst loading at 120°C) in a system which is selective for the desired product, has low energy intensity and is environmentally benign

    Direct catalytic conversion of cellulose to 5-hydroxymethylfurfural using ionic liquids

    No full text
    Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF). Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl−) and Brønsted acidic (X = HSO4−) anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration). Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation

    Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy

    Get PDF
    Over the last decade, much work has been dedicated to improving the performance of gadolinium-based magnetic resonance imaging (MRI) contrast agents by tethering them to biocompatible gold nanoparticles. The enhancement in performance (measured in terms of ‘relaxivity’) stems from the restriction in motion experienced by the gadolinium chelates on being attached to the gold nanoparticle surface. More recently, the unique properties of gold nanoparticles have been exploited to create very promising tools for multimodal imaging and MRI-guided therapies. This review addresses the progress made in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics. It also seeks to connect the chemical properties of these assemblies with potential application in the clinic
    • …
    corecore