25 research outputs found

    Matrix Metalloproteinase Inhibitors Disrupt Spicule Formation by Primary Mesenchyme Cells in the Sea Urchin Embryo

    Get PDF
    AbstractThe primary mesenchyme cells of the sea urchin embryo construct an elaborate calcareous endoskeletal spicule beginning at gastrulation. This process begins by ingression of prospective primary mesenchyme cells into the blastocoel, after which they migrate and then fuse to form a syncytium. Skeleton deposition occurs in spaces enclosed by the cytoplasmic cables between the cell bodies. Experiments are described which probe the role of proteases in these early events of spicule formation and their role in the continued elaboration of the spicule during later stages of embryogenesis. We find that several inhibitors of metalloproteinases inhibit the continuation of spiculogenesis, an effect first reported by Roeet al.(Exp. Cell Res.181, 542–550, 1989). A detailed study of one of these inhibitors, BB-94, shows that fusion of primary mesenchyme cells still occurs in the presence of the inhibitor and the formation of the first calcite granule is not impeded. Continued elaboration of the spicule, however, is completely stopped; addition of the inhibitor during the active elongation of the spicule stops further elongation immediately. Removal of the inhibitor allows resumption of spicule growth. The inhibition is accompanied by almost complete cessation of massive Ca ion transport via the primary mesenchyme cells to the spicule. The inhibitor does not prevent the continued synthesis of several spicule matrix proteins. Electron microscopic examination of inhibited primary mesenchyme cells shows an accumulation of characteristic vesicles in the cytoplasm. Gel zymography demonstrates that although most proteases in homogenates of primary mesenchyme cells are not sensitive to the inhibitorin vitro,a protease of low abundance detectable in the medium of cultured primary mesenchyme cells is inhibited by BB-94. We propose that the inhibitor is interfering with the delivery of precipitated calcium carbonate and matrix proteins to the site(s) of spicule growth

    Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sea urchin embryo has been an important model organism in developmental biology for more than a century. This is due to its relatively simple construction, translucent appearance, and the possibility to follow the fate of individual cells as development to the pluteus larva proceeds. Because the larvae contain tiny calcitic skeletal elements, the spicules, they are also important model organisms for biomineralization research. Similar to other biominerals the spicule contains an organic matrix, which is thought to play an important role in its formation. However, only few spicule matrix proteins were identified previously.</p> <p>Results</p> <p>Using mass spectrometry-based methods we have identified 231 proteins in the matrix of the <it>S. purpuratus </it>spicule matrix. Approximately two thirds of the identified proteins are either known or predicted to be extracellular proteins or transmembrane proteins with large ectodomains. The ectodomains may have been solubilized by partial proteolysis and subsequently integrated into the growing spicule. The most abundant protein of the spicule matrix is SM50. SM50-related proteins, SM30-related proteins, MSP130 and related proteins, matrix metalloproteases and carbonic anhydrase are among the most abundant components.</p> <p>Conclusions</p> <p>The spicule matrix is a relatively complex mixture of proteins not only containing matrix-specific proteins with a function in matrix assembly or mineralization, but also: 1) proteins possibly important for the formation of the continuous membrane delineating the mineralization space; 2) proteins for secretory processes delivering proteinaceous or non-proteinaceous precursors; 3) or proteins reflecting signaling events at the cell/matrix interface. Comparison of the proteomes of different skeletal matrices allows prediction of proteins of general importance for mineralization in sea urchins, such as SM50, SM30-E, SM29 or MSP130. The comparisons also help point out putative tissue-specific proteins, such as tooth phosphodontin or specific spicule matrix metalloproteases of the MMP18/19 group. Furthermore, the direct sequence analysis of peptides by MS/MS validates many predicted genes and confirms the existence of the corresponding proteins.</p
    corecore