74,232 research outputs found

    Spectral absorption coefficients of carbon, nitrogen, and oxygen atoms

    Get PDF
    Spectral absorption coefficients of carbon, nitrogen, and oxygen atoms tabulated for use in radiant energy transfer calculation

    An aid to the development of Botswana's resources: Section on hydrology

    Get PDF
    The author has identified the following significant results. It is proved that FCC's can be used for a simple estimate of the total evaportranspiring area of the Okavango Delta, sufficiently accurate for preliminary inputs for the development of mathematical model of the surface hydrology of the delta. The color coded matrix has shown as interesting inverse correlation with an array on the same grid prepared by ecologists from air photography study, for percent liable to flood

    Methods and apparatus employing vibratory energy for wrenching Patent

    Get PDF
    Ultrasonic wrench for applying vibratory energy to mechanical fastener

    Conceptual design for Mobile Geological Laboratory position and heading fix system

    Get PDF
    Conceptual design of position fixing system for Mobile Geological Laboratory in Lunar Mobile Laboratory simulatio

    Neon transport in selected organic composites

    Get PDF
    An energy-dependent, perturbation expansion solution for heavy-ion transport in one dimension was used to calculate the dose from Ne-20 beams at incident kinetic energies of 350, 670, and 2000 MeV/amu onto selected organic composites. Transport coefficients, applicable to arbitrary ion beams over a broad range of energies, are presented. Polyethylene and Kapton were tested as constituents of multilayered shielding for spacecraft and astronauts

    Heavy-ion total and absorption cross sections above 25 MeV/nucleon

    Get PDF
    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of heavy ion total and absorption cross sections at incident kinetic energies above 25 MeV/nucleon for use in cosmic ray high-energy heavy ion transport and shielding studies. Comparisons of predictions with nucleus-nucleus experimental data show excellent agreement except at the lowest energies, where the eikonal approximation may not be completely valid. Even at the lowest energies, however, agreement is typically within 20 percent

    The CZCS geolocation algorithms

    Get PDF
    The Coastal Zone Color Scanner (CZCS) on board the Nimbus 7 satellite was designed to measure surface radiance upwelled from the ocean in 6 spectral bands. The CZCS spectrometer obtains its information from a rotating mirror and is timed to collect data when the mirror views the Earth surface between ca. 40 degrees to the left and right of the subsatellite track. Each scan is divided into 1968 picture elements, pixels, of 0.04 degrees scan each. In order to avoid direct reflected Sun glint, the rotating mirror shaft can be tilted so that scans across the subsatellite track up to 20 degrees forward or aft of the point directed beneath the satellite. The CZCS is the first satellite borne instrument to have this tilted scan capability and therefore poses some new problems in locating the Earth surface position of viewed pixels

    Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon

    Get PDF
    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made

    Quantum Nonlocality for a Mixed Entangled Coherent State

    Get PDF
    Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2×22\times2 Hilbert space. The quantum nonlocality persists longer in 2×22\times2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.Comment: 20 pages, 7 figures. To be published in J. Mod. Op
    corecore