100,446 research outputs found

    The structure of lightning flashes HF-UHF: 12 September 1975, Atlanta, Georgia

    Get PDF
    Simultaneous measurement of sferics at 3, 30, 139, and 295 MHz were made during thunderstorms. Wideband electronics and an analogue tape recorder continuously recorded the radiation from lightning with about 300 kHz of bandwidth. The data were obtained during the passage of a cold front. Flashing rate, burst rate and the structure of individual flashes were recorded. The record of a typical flash begins with a sudden burst of closely spaced pulses whose temporal structure is typical of the stepped leader, and ends in a large pulse suggestive of a first return stroke. The remainder of the flash consists of a sequence of pulses of varying amplitude separated by quiet periods of the order of milliseconds. The shape of these pulses and the temporal structure suggest that the first few large pulses are return strokes. Other discharges begin with widely spaced discrete pulses and resemble the preceding discharge less the leader and return stroke phase. The radiation exhibits a similar structure, at each of the frequencies monitored

    On-demand microwave generator of shaped single photons

    Get PDF
    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.Comment: 10 pages, 7 figures. Published versio

    Radio-controlled model design and testing techniques for stall/spin evaluation of general-aviation aircraft

    Get PDF
    A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests

    The ground state of clean and defected graphene: Coulomb interactions of massless Dirac fermions, pair-distribution functions and spin-polarized phases

    Full text link
    First-principles density functional calculations for graphene and defected graphene are used to examine when the quasi-2D electrons near the Fermi energy in graphene could be represented by massless fermions obeying a Dirac-Weyl (DW) equation. The DW model is found to be inapplicable to defected graphene containing even \sim3% vacancies or N substitution. However, the DW model holds in the presence of weakly adsorbed molecular layers. The possibility of spin-polarized phases (SPP) of DW-massless fermions in pure graphene is considered. The exchange energy is evaluated from the analytic pair-distribution functions as well as in kk-space. The kinetic energy enhancement of the sipn-polarized phase nearly cancels the exchange enhancement, and the correlation energy plays a dominant residual role. The correlation energies are estimated via a model four-component 2D electron fluid whose Coulomb coupling matches that of graphene. While SPPs appear with exchange only, the inclusion of correlations suppresses them in ideal graphene.Comment: ~7 pages, 6 figure

    SWKB Quantization Rules for Bound States in Quantum Wells

    Get PDF
    In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page

    The Nuclear Outflow in NGC 2110

    Full text link
    We present a HST/STIS spectroscopic and optical/radio imaging study of the Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of the nuclear outflow in the galaxy. Previous HST studies have revealed the presence of a linear structure in the Narrow-Line Region (NLR) aligned with the radio jet. We show that this structure is strongly accelerated, probably by the jet, but is unlikely to be entrained in the jet flow. The ionisation properties of this structure are consistent with photoionisation of dusty, dense gas by the active nucleus. We present a plausible geometrical model for the NLR, bringing together various components of the nuclear environment of the galaxy. We highlight the importance of the circum-nuclear disc in determining the appearance of the emission line gas and the morphology of the jet. From the dynamics of the emission line gas, we place constraints on the accelerating mechanism of the outflow and discuss the relative importance of radio source synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in accelerating the gas. While all three mechanisms can account for the energetics of the emission line gas, gravitational arguments support radio jet ram pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA

    A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    The Starburst in the Central Kiloparsec of Markarian 231

    Get PDF
    We present VLBA observations at 0.33 and 0.61 GHz, and VLA observations between 5 and 22 GHz, of subkiloparsec scale radio emission from Mrk 231. In addition to jet components clearly associated with the AGN, we also find a smooth extended component of size 100 - 1000 pc most probably related to the purported massive star forming disk in Mrk 231. The diffuse radio emission from the disk is found to have a steep spectrum at high frequencies, characteristic of optically thin synchrotron emission. The required relativistic particle density in the disk can be produced by a star formation rate of 220 Msolar/yr in the central kiloparsec. At low frequencies the disk is absorbed, most likely by ionized gas with an emission measure of 8 x 10^5 pc cm-6. We have also identified 4 candidate radio supernovae that, if confirmed, represent direct evidence for ongoing star formation in the central kiloparsec.Comment: in press at ApJ for v. 519 July 1999, 14 page LaTeX document includes 6 postscript figure

    Effects of backing plates on the electron exposure of thin polymer films

    Get PDF
    The effects of backing plates on the radiation dose received by thin nylon films were calculated using recently developed multilayer electron transport codes. The film dose increased with increasing atomic number of the backing plate. The estimated dose could be off by a factor of 2 or more if the backing plate were ignored in the calculations
    corecore