7,198 research outputs found

    Syn- and post-rift lower crustal flow under the Sunda Shelf, southern Vietnam: A role for climatically modulated erosion

    Get PDF
    Tectonic subsidence on rifted, passive continental margins are largely controlled by patterns of extension and the nature of strain partitioning in the lithosphere. The Sunda Shelf, adjacent to the SW South China Sea, is characterized by deep basins linked to regional Cenozoic extension associated with propagating seafloor spreading caused by slab pull from the south. Analysis of seismic reflection profiles and drilled sections crossing the Nam Con Son and Cuu Long basins highlight Oligocene extension, with most of the thinning concentrated in the ductile mid-lower crust. Upper crustal extension was modest and ductile flow is inferred to be directed northwestwards, towards the oceanic crust. Basin inversion occurred in the Mid Miocene, associated with the collision of the Dangerous Grounds Block and Borneo. Subsequent accelerated tectonic subsidence exceeded predictions from uniform extension models assumed to relate to extensional collapse after inversion. We correlate this to a period of faster erosion onshore driven by strong monsoon rains in Indochina and Peninsular Thailand at that time. Erosion of the onshore basement, inducing rock uplift and coupled with loading of the basins offshore, drives ductile mid-lower crustal flow, likely to the northeast under Indochina, and/or to the west where Plio-Pleistocene subsidence of the shelf is very slow. Significant sediment delivery from the Mekong River into the Cuu Long Basin began in the Late Miocene and migrated seawards as the basin filled. Mass balancing suggests that the basins of this part of the Sunda Shelf are filled through erosion of bedrock sources around the Gulf of Thailand. There is no need for sediment delivery from a major river draining the Tibetan Plateau to account for the deposited volumes

    Marriage, religion and human flourishing: how sustainable is the classic Durkheim thesis in contemporary Europe?

    Get PDF
    This paper draws on the three waves of the European Values Survey across five countries (Great Britain, Italy, the Netherlands, Northern Ireland, Spain and Sweden) to investigate the relationship between indicators of positive psychology (conceptualised as feelings of happiness and satisfaction with life), religiosity (conceptualised as self-assigned religious affiliation and self-reported religious attendance) and marital status. The results demonstrate that religiosity is, in general, positively correlated with both indicators of positive psychology. Further, across all waves and all countries, the pattern emerges that those respondents who are married are likely to report higher levels of happiness and greater satisfaction in life. These data provide contemporary support for the classic Durkheim thesis linking the two institutions of marriage and religion with human flourishing

    Fossils and living taxa agree on patterns of body mass evolution:A case study with Afrotheria

    Get PDF
    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns

    Reappraising Threat: How to Optimize Performance Under Pressure

    Get PDF
    Competitive situations often hinge on one pressurized moment. In these situations, individuals' psychophysiological states determine performance, with a challenge state associated with better performance than a threat state. But what can be done if an individual experiences a threat state? This study examined one potential solution: arousal reappraisal. Fifty participants received either arousal reappraisal or control instructions before performing a pressurized, single-trial, motor task. Although both groups initially displayed cardiovascular responses consistent with a threat state, the reappraisal group displayed a cardiovascular response more reflective of a challenge state (relatively higher cardiac output and/or lower total peripheral resistance) after the reappraisal manipulation. Furthermore, despite performing similarly at baseline, the reappraisal group outperformed the control group during the pressurized task. The results demonstrate that encouraging individuals to interpret heightened physiological arousal as a tool that can help maximize performance can result in more adaptive cardiovascular responses and motor performance under pressure

    Adjusting teaching loads to recognize the new reality of teaching

    Get PDF
    Teaching science courses seems to take more time these days. Contributing factors include an explosion of cognitive science and discipline-based education research, an increased awareness of student health and wellness, and lessons learned from pandemic teaching, which increased student support and technology use. Underpinning current and ongoing innovation is a commitment to ensure all students feel they belong in and can learn science. Investing time in teaching science more effectively also contributes to our own sense of belonging in a professional community of post-secondary educators. Evidence-informed teaching typically involves developing and delivering multiple low stakes assignments—including in-class activities—incorporating flexibility to create inclusive classrooms, and more complex course websites. These can require more preparation and administrative time and increased communication with students. Even if available, TA teams require training and often flexibility to accommodate graduate student needs. These responsibilities seem greater than what was expected years ago when a midterm and three lecture hours were sufficient. What seems to have been missed, or perhaps strategically ignored, by administrators is the negative impact on faculty workload and mental health. Here we’ll explore the impact of changing teaching strategies on the time it takes to deliver a course, and collaboratively generate a “how to” guide looking at ways of measuring and monitoring the impact of changes in science teaching on workload, as well as strategies for effectively advocating for updates to teaching workloads. Just as our teaching should create inclusive environments that are sensitive to mental health and wellbeing, so too should our work environments. Please bring an internet enabled device (e.g., smartphone) so that you can participate in polls and share ideas with online participants

    Identification and classification of host cell proteins during biopharmaceutical process development

    Get PDF
    As significant improvements in volumetric antibody productivity have been achieved by advances in upstream processing over the last decade, and harvest material has become progressively more difficult to recover with these intensified upstream operations, the segregation of upstream and downstream processing has remained largely unchanged. By integrating upstream and downstream process development, product purification issues are given consideration during the optimization of upstream operating conditions, which mitigates the need for extensive and expensive clearance strategies downstream. To investigate the impact of cell culture duration on critical quality attributes, CHO-expressed IgG1 was cultivated in two 2 L bioreactors with samples taken on days 8, 10, 13, 15, and 17. The material was centrifuged, filtered and protein A purified on a 1 ml HiTrap column. Host cell protein (HCP) identification by mass spectrometry (MS) was applied to this system to provide insights into cellular behavior and HCP carryover during protein A purification. It was shown that as cultivation progressed from day 8 to 17 and antibody titer increased, product quality declined due to an increase in post-protein A HCPs (from 72 to 475 peptides detected by MS) and a decrease in product monomer percentage (from 98% to 95.5%). Additionally, the MS data revealed an increase in the abundance of several classes of post-protein A HCPs (e.g., stress response proteins and indicators of cell age), particularly on days 15 and 17 of culture, which were associated with significant increases in total overall HCP levels. This provides new insight into the specific types of HCPs that are retained during mAb purification and may be used to aid process development strategies

    A comparison of two astronomical tuning approaches for the Oligocene-Miocene Transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    Get PDF
    Astronomical tuning of sediment sequences requires both unambiguous cycle-pattern recognition in climate proxy records and astronomical solutions, and independent information about the phase relationship between these two. Here we present two astronomically tuned age models for the Oligocene-Miocene Transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning approaches have on astronomically calibrated ages and the geologic time scale. These age models are based on different phase-assumptions between climate proxy records and eccentricity: the first age model is based on an inverse and in-phase assumption of CaCO3 weight (wt %) to Earth's orbital eccentricity, the second age model is based on an inverse and in-phase assumption of benthic foraminifer stable carbon isotope ratios (δ13C) to eccentricity. The phase-assumptions that underpin these age models represent two end-members on the range of possible tuning options. To independently test which tuned age model and tuning assumptions are correct, we assign their ages to magnetostratigraphic reversals identified in anomaly profiles. Subsequently we compute tectonic plate-pair spreading rates based on the tuned ages. These alternative spreading rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n–C6Cn.1r, which are not based on astronomical tuning in the latest iteration of the Geologic Time Scale. Furthermore, it provides independent evidence that the relatively large (several 10,000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity, constitute a real feature of the Oligocene-Miocene climate system and carbon cycle. The age constraints from Site U1334 thus provide independent evidence that the delayed responses of the Oligocene-Miocene climate-cryosphere system and carbon cycle resulted from increased nonlinear feedbacks to astronomical forcing

    Metal-Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Al-SBA-15

    Get PDF
    Invited for this month′s cover is the group of Karen Wilson and Adam Lee at RMIT University. The image shows platinum nanoparticles and Brønsted acid sites working cooperatively to catalyse the efficient hydrodeoxygenation of phenolic lignin residues to produce sustainable biofuels. The Full Paper itself is available at 10.1002/cssc.202000764

    Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes

    Get PDF
    postprintThe 18th Joint Annual Meeting of ISMRM-ESMRMB, Stockholm, Sweden, 1-7 May 2010

    Carbon-enhanced stars with short orbital and spin periods

    Get PDF
    Many characteristics of dwarf carbon stars are broadly consistent with a binary origin, including mass transfer from an evolved companion. While the population overall appears to have old-disc or halo kinematics, roughly 2 per cent of these stars exhibit Hα emission, which in low-mass main-sequence stars is generally associated with rotation and relative youth. Its presence in an older population therefore suggests either irradiation or spin-up. This study presents time-series analyses of photometric and radial-velocity data for seven dwarf carbon stars with Hα emission. All are shown to have photometric periods in the range 0.2–5.2 d, and orbital periods of similar length, consistent with tidal synchronisation. It is hypothesised that dwarf carbon stars with emission lines are the result of close-binary evolution, indicating that low-mass, metal-weak or metal-poor stars can accrete substantial material prior to entering a common-envelope phase
    • …
    corecore