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Abstract 10 

Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution 11 

is typically seen as necessary to understand the diversification of life and patterns of 12 

morphological evolution. Here we test the effects of inclusion of fossils in a study of the body 13 

size evolution of afrotherian mammals, a clade that includes the elephants, sea cows, and 14 

elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body 15 

mass evolution; from a small ancestral size (~ 100 grams), there is a shift in rate and an 16 

increase in mass leading to the larger-bodied Paenungulata and Tubulidentata regardless of 17 

whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of 18 

fossils and morphological character data affects phylogenetic topology, but these differences 19 

have little impact upon patterns of body mass evolution and these body mass evolutionary 20 

patterns are consistent with the fossil record. The largest differences between our analyses 21 

result from the evolutionary model, not the addition of fossils. For some clades, extant-only 22 

analyses may be reliable to reconstruct body mass evolution, the addition of fossils and 23 

careful model selection is likely to increase confidence and accuracy of reconstructed 24 

macroevolutionary patterns. 25 

Keywords: evolution, fossil, body mass, ancestral size reconstruction, Afrotheria, 26 

macroevolution   27 
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Introduction 28 

Body mass evolution of Mammalia has received considerable attention in the literature [1-29 

11]. Particular interest has been shown in changes in body size following the K-Pg mass 30 

extinction [1], the modes of evolution [2,5], and how rates vary through geological time [3,7]. 31 

Many studies have approached these issues from an extant-species only perspective (e.g. 32 

[3,4]), but there is an increasing awareness of the importance of including fossils in 33 

macroevolutionary analyses [5,6,8-10,12]. 34 

Studying events in deep time using only extant taxa is problematic, as ignoring fossil data can 35 

introduce biases and inaccurate reconstruction of phylogenies and macroevolutionary patterns 36 

[13]. Further, when studying morphological change, the inclusion of fossils can improve 37 

ancestral state estimates in deep time: models with fossil information may fit better than 38 

models without [5,6,8-10] and fossil evidence can be used as prior information on ancestral 39 

body mass [8]. However, there is some suggestion that studies of macroevolution may be 40 

obscured by fossil evidence as it can obfuscate patterns by introducing its own biases [11]. 41 

One area that is particularly sensitive to the inclusion of fossils is ancestral state 42 

reconstruction. Ancestral state reconstruction is generally difficult [14,15] and ignoring fossil 43 

evidence can lead to over-inflated estimates of ancestral mass [6].  44 

Methodological approaches, as well as the inclusion of fossils, can greatly influence 45 

interpretations of macroevolution. Many methods employ a gradualistic Brownian motion 46 

(BM) model to study body mass evolution [16-19] and many approaches have built on this 47 

framework to study evolutionary tempo [3,20,21] and mode [17-19,22,23]. Recently, 48 

parametric approaches have been employed that can model gradual evolution with sporadic 49 

bursts [24,25], so these are not rooted in the gradual evolution expectation of the BM model. 50 

Currently, the relative influence of model selection versus the inclusion or exclusion of 51 

fossils on our understanding of evolution is unclear. Indeed, it may be that models and fossils 52 

matter crucially in some circumstances, but not in others. 53 

A first step to understanding the relative impacts of fossils and models on ancestral state 54 

reconstruction is to reconcile extant (typically molecular) and fossil (morphological) 55 

phylogenies. Recently developed methods allow for the incorporation of living and fossil data 56 

in phylogenies, by enabling the concurrent analysis of molecular and morphological 57 

characters [26,27]. An important step in this process is the use of fossils as tips to date 58 

phylogenies [26,27] compared to traditional node dating. Total-evidence dating resolves 59 

previous problems of uncertain assignment of fossils to nodes by including fossils in the 60 

phylogenetic analysis [28] and it has also been suggested that molecular data improves the 61 

resolution of phylogenies containing fossils [29].  62 

Here we test the influence of the inclusion and exclusion of fossils on the rates and modes of 63 

afrotherian body mass evolution. Using a total-evidence analysis [27], fossils were 64 

incorporated from a morphological matrix [30], and evolutionary models were compared to 65 

both a traditional molecular-only node-dated tree, and a total-evidence tree that had the 66 

fossils removed.  67 
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Afrotheria, which includes elephants, hyraxes, and tenrecs, consists of around 77 extant 68 

species [31-33]. The general consensus on their relationships is that Afrotheria comprises two 69 

clades: Afroinsectiphilia, including Tubulidentata (aardvark), Afrosoricida (Chrysochloridae 70 

plus Tenrecidae) and Macroscelidea (elephant shrews), and the generally larger-bodied 71 

Paenungulata, including elephants and hyraxes [30,33]. Fossil afrotheres are known 72 

throughout the Cenozoic [34], and living forms are known to have a wide variation of body 73 

size that spans six orders of magnitude.  74 

Surprisingly, we find the inclusion or exclusion of fossil tips has little impact on analyses of 75 

body mass macroevolution: with all phylogenies there is a relatively small ancestral body size 76 

for Afrotheria, and a branch-based shift in rate leading to Paenungulata and Tubulidentata. 77 

No datasets support Brownian motion models of evolution, and parametric rate-variable 78 

approaches indicate a smaller ancestral mass compared to Brownian motion estimates. The 79 

addition of fossil tips on the phylogeny here has little impact on evolutionary rate analyses, 80 

but there are differences attributable to model selection. Whilst inclusion of morphological 81 

characters and fossil species alters phylogenetic topology, these differences result in 82 

negligible differences in patterns of body mass evolution or ancestral body mass estimation. 83 

In some cases of macroevolutionary analyses, as here, it may be possible to reconstruct 84 

evolutionary history whilst using extant species only, although the addition of fossils will 85 

increase confidence of reconstructed patterns. 86 

Methods 87 

Taxa 88 

We recognise a total of 77 extant afrotherian species (see electronic supplementary material, 89 

S1) [31], and we used a morphological matrix of fossil and extant afrotheres [30, 35]. The 90 

matrix contains a sample of fossil taxa across Afrotheria, and these fossils are generally 91 

early-diverging members of crown clades, so it is likely that they give good estimates of 92 

ancestral morphology and timing of diversification [27, 35]. We sample a total of 39 93 

afrotherian fossils based on morphological data only and a further seven taxa for which 94 

molecular data is available (see below). For Afrotheria, the morphological data samples all 95 

extant orders, as well as fossil members of extant orders. Within Afrotheria, these fossil taxa 96 

are believed to be stem or crown members of extant familes, with the possible exception of 97 

Chambius kasserinensis and Herodotius pattersoni [35]. Extant outgroup taxa were selected 98 

from Xenathra (3 species), Boreoeutheria (13 species), and marsupials (3 species). 99 

Additionally, we sampled two fossil crown placentals (Montanalestes keeblerorum and 100 

Prokennalestes trofimovi) (see electronic supplementary material, S1). 101 

Genetic Data 102 

Genetic data were taken for six nuclear and four mitochondrial loci from Genbank [33, 36]. 103 

Genetic data were aligned using ClustalW [37], with protein-coding genes aligned by codons 104 

and non-protein genes by nucleotide. Unalignable regions were removed from non-coding 105 

sequences using GBlocks (version 0.91b) [38]. 106 
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The following genes were used in the analyses: Growth Hormone Receptor (GHR), Alpha-2B 107 

Adrenergic Receptor (ADRA2B), Androgen Receptor (AR), von Willebrand Factor (vWF), 108 

Interphotoreceptor Retinoid-Binding Protein (IRBP), and Brain-Derived Neurotrophic Factor 109 

(BDNF) were the nuclear protein-coding genes, and Cytochrome b (cytb) and Nicotinamide 110 

Adenine Dinucleotide (NADH2) were the two mitochondrial protein-coding genes. 111 

Additionally, sequence data from the mitochondrial 12s and 16s genes were collected. The 112 

dataset differs from Kuntner et al. [33] by the addition to Brain-Derived Neurotrophic Factor 113 

and some additional data for some species (see Supplementary Material S1). Of the 77 extant 114 

species recognised we have genetic data for 60 (approximately 78% of the total). When 115 

extinct species that have genetic information are included, coverage for Afrotheria species 116 

ranges from 67% for GHR to 25% for AR.  117 

Data were also collected for extinct species in the analysis. As with Kuntner et al. [33], we 118 

gathered information on the proboscideans Elephas antiquus falconeri, Elephas cypriotes, 119 

Elephas maximus asurus, and Elephas sp., and an undetermined species from Tilos island 120 

[32]. We also included the mastodon Mammut americanum, and the mammoths Mammuthus 121 

primigenius and Mammuthus columbii and Steller’s sea cow (Hydrodamalis gigas).  122 

All alignments were checked by eye. PartitionFinder (version 1.1.1) [39] was used to select 123 

the partitions of genes and models of evolution for the genetic data. For most genes the best-124 

fitting substitution model was the General Time-Reversible (GTR) model with gamma 125 

distributed rate variation between sites and a proportion of invariant sites. Exceptions to this 126 

model were the GTR with gamma distributed rate variation and no invariant sites (cytB), the 127 

Kimura 82 model (GHR), and the Kimura 82 model with a proportion of invariant sites 128 

(BDNF). 129 

Phylogenies 130 

Phylogenies were constructed and dated in MrBayes 3.2.5 [40]. All phylogenetic analyses 131 

were run for twenty million generations sampling every 1000 generations, with four chains 132 

and four independent runs for each analysis. The heating parameter was set to 0.05 for 133 

analyses that included fossils and 0.1 for analyses that did not include fossils. Priors were set 134 

using established protocols [27] (see electronic supplementary material, S1), and convergence 135 

was judged using in-built diagnostics of MrBayes and Tracer [41]. 136 

An initial non-clock analysis was run on the entire dataset of fossils and extant species, with 137 

no calibration on ages (see Supplementary Materials S5, and Supplementary Fig. S2).  138 

Time-calibrated analyses 139 

We conducted three sets of dating analyses (i) node and tip dating using both morphological 140 

and molecular data (total-evidence analysis), (ii) node only dating using molecular data only 141 

(node-dating analyses), and (iii) node only dating using both morphological and molecular 142 

data. For both the total-evidence and node-dating analyses, the following nodes were 143 

calibrated at Theria (root), Marsupialia, Placentalia (crown), Boreoeutheria, Atlantogenata, 144 

Xenarthra, Afrotheria, Paenungulata, and Macroscelidea. Node dates were set as offset-145 
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exponential distributions with dates primarily taken from a published source [42]. For the 146 

total-evidence analysis, tip dates came from 41 unconstrained species believed to be 147 

Afrotheria and from two stem placentals. Tip dates for fossils were set as uniform 148 

distributions, with dates taken from the FossilWorks [43] portal which accesses data in the 149 

Paleobiology Database [44] (see electronic supplementary material, S6). However these data 150 

were further checked using the primary literature (see Supplementary Table S2). For the 151 

total-evidence analyses there were 50 dating points on the phylogeny (41 tips dates and nine 152 

node dates). In MrBayes, we set the fossilised birth-death model [45] as tree prior. The 153 

fossilised birth-death model relaxes the assumption of a uniform prior between the timing of 154 

nodes and incorporates estimates of speciation, extinction, and fossil sampling rates into the 155 

tree prior. In this model we assumed that fossil tips are sampled as branching lineages 156 

(‘Samplestrat=fossiltip’) but not as direct ancestors sitting on branches as is used in some 157 

models (i.e., not in the implementation in [46]). Priors for the speciation, extinction, and 158 

sampling rates were set at their defaults as according to MrBayes 3.2.5: the speciation rate 159 

prior (‘SpeciationPr’) was set to an exponential distribution with rate 1, and the relative 160 

extinction rate prior (‘Extinctionpr’) and the relative fossilisation rate (‘FossilizationPr’) were 161 

both set to a Beta distribution (mean = 1, shape = 1) which gives a uniform prior between 0-162 

1.  163 

For the total evidence analysis the following topological constraints were applied: 164 

Marsupalia, Boreoeutheria, Atlantogenata, Xenarthra, crown Placentalia, Afrotheria, 165 

Paenungulata, Proboscidea, Sirenia, Hyracoidea, Macroscelidea, crown Macroscelidea, and 166 

Chrysochchloridae. These clade memberships were based upon an initial unconstrained non-167 

clock phylogenetic analysis. 168 

Body Mass Data 169 

Measurements of body mass were obtained for extant and extinct species in the phylogeny. 170 

Body mass data for extant species were predominantly taken from published estimates (see 171 

electronic supplementary material, S12). For the extinct species, the preferred data sources 172 

were from previously published mass estimates; when published data were not available, 173 

body masses were mainly estimated from regression equations on molar area [47] (see 174 

electronic supplementary material, S12). 175 

Models of Body Mass Evolution 176 

Models of body mass evolution were tested on a selection of trees to assess the impact of 177 

fossils. For a direct comparison of the effects of fossils, body mass evolution was tested on 178 

the total-evidence phylogeny (i), and on the total-evidence phylogeny with fossils removed 179 

(ii). Furthermore, models were tested on the molecular-only node-dated phylogeny (iii), as 180 

this reflects the classic approach to construct time-calibrated phylogenies for comparative 181 

analyses. Additionally, models were tested on the node-dated phylogeny constructed using 182 

molecular and morphological data (iv).  183 

The BM model is commonly used either to model trait evolution on phylogenies directly or 184 

as a basis for more complex models. The BM model assumes, on a phylogeny with branch 185 
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lengths scaled to time, that variation in trait data accumulates proportionally through time, 186 

with a mean expectation of zero change in the value of the trait per unit time. However, the 187 

model makes assumptions that may be unrealistic [24,25]. The nature of the model means 188 

that variance, and therefore rates, are finite and do not change in the phylogeny [25]. 189 

Therefore, to incorporate any rate variation the model must be extended with extra 190 

parameters to model changes in rate [3,20,21,48]. If this is performed over the entire 191 

phylogeny with each branch permitted to take a unique rate [48], the result is that the model 192 

has too many parameters for justifiable inference – a new rate on every branch in a fully 193 

bifurcating phylogeny results in nearly as twice as many parameters (2n-2 where n is tips) as 194 

data points (values at the tips). An alternative to modelling specific changes in rates is to use 195 

parametric models that do not assume constant rates, by sampling rates from a heavy-tailed, 196 

rather than normal, distribution [24, 25]. This achieves two objectives: these models do not 197 

require a homogeneous gradual model of evolution, and they allow for an ancestral trait 198 

reconstruction with a model of rate evolution that is not over-parameterised. 199 

We use the software StableTraits to parametrically model gradual evolution with intermittent 200 

bursts and to reconstruct ancestral size estimates and model rates through time [25]. 201 

StableTraits samples from a symmetrical, mean zero distribution which is defined by its 202 

index of stability (α): for BM α=2, which results in a normal distribution, but when α<2 this 203 

results in a shallower distribution with heavy tails which allows for a more unpredictable 204 

evolutionary trajectory. For all trees, results from a heavy tailed distribution in which the α is 205 

allowed to vary from BM were compared to a BM model in terms of the rates through time, 206 

ancestral size estimation, and the model fit [25]. The MCMC chain was run for 2000000 207 

iterations with four runs, until the Potential Scale Reduction Factor went below 1.01. The 208 

burn-in was set to 10%, with the output containing the calculated rates, ancestral states, and 209 

maximum posterior probability. The model was tested against a model fixed to BM by re-210 

running the analyses with α = 2, and then comparing the Bayesian Predictive Information 211 

Criterion (BPIC) [25]. Subsequent data processing and plotting were carried out in R [49].  212 

Prior information on ancestral mass 213 

To introduce further information for the ancestral mass estimation for Afrotheria, an arbitrary 214 

outgroup tip was added and set a given mass to represent knowledge from the fossil record or 215 

ancestral estimates from previous studies; this outgroup was separated from Afrotheria by 216 

either 5 Myr (the edge leading to the tip of the outgroup was 0.01 Myr). 5 Myr was the 217 

original length separating the Afrotheria from the Xenarthra and would allow prior 218 

information to influence the root, but the mass value could change over the length. In 219 

different analyses the outgroup was given a mass of 0.1, 0.5, 1, 5, 10, and 20 kg respectively. 220 

The values incorporate estimates for late Cretaceous mammals from the fossil record, ~80g 221 

[1], as well as larger estimates for ancestral Afrotheria from genomic studies, ~0.5–30 kg 222 

[e.g, 4].  223 

Results  224 

Topology and divergence times 225 
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The total-evidence phylogeny (figure 1) and non-clock phylogeny (see electronic 226 

supplementary material, figure S2) are very similar, and the composition of all the major 227 

clades is identical.  228 

Larger differences are seen when morphological data is included compared to molecular-only 229 

topologies: in all analyses with the morphological cladistic matrix Afroinsectiphilia is not 230 

monophyletic as Macroscelidea is closer to Paenungulata. The composition of crown families 231 

is consistent, but the position of fossil taxa do vary between analyses. For example, the fossils 232 

Chambius and Herodotius move from sister of Paenungulata plus Tubulidentata in the non-233 

clock topology to being in a basal polytomy with Macroscelidea in the total-evidence 234 

analysis.  235 

Ages from the total-evidence analysis that includes fossils (figure 1) are older than the ages 236 

from node-dating analysis (Table 1).  237 

Ancestral States  238 

For all analyses, neither rates nor ancestral body size reconstructions are strongly influenced 239 

by the inclusion of in-group fossils. Additionally, for all analyses the StableTraits model 240 

provided a better fit for the data than BM. 241 

 In the total-evidence based approach with no-outgroups and rate heterogeneous 242 

(StableTraits) model the ancestral size at the origin of the Afrotheria is estimated to be 0.10 243 

kg (95% CIs 0.02-0.95 kg). In contrast, the BM estimate is an order of magnitude larger 1.45 244 

kg (95% CIs, 0.31-6.82 kg); however, the broad confidence intervals overlap with those of 245 

the rate heterogeneous model (table 2; figure 2). The fit of the heavy tailed rate 246 

heterogeneous model (α = 1.77, 1.47-1.94) was superior to the BM model (α = 2) (∆BPIC = 247 

21.8).  248 

Removal of fossils caused little difference in the ancestral size estimation of Afrotheria 249 

(0.13kg) but had a marked effect on the confidence intervals, which became much wider 250 

(0.02-12.48 kg). For the molecular-only node dating analysis, the ancestral size for estimate 251 

Afrotheria was 0.11 kg (95% CIs, 0.02-761.4 kg). Similar results were found for the 252 

combined morphological-molecular node-dating analysis (Table 2). 253 

Evolutionary Rates from StableTraits 254 

In all StableTraits analyses there is an increase in the rate of body mass evolution leading to 255 

the Tubulidentata plus Paenungulata (figure 2). For the total-evidence analysis, the increase 256 

leading to Tubulidentata plus Paenungulata is 137.7 times the original branch length (length 257 

of the identical branch on the time-scaled input phylogeny) (figure 2), compared to an 258 

increase of 117.0 times the original length when fossils are removed from the phylogeny. The 259 

rate increases are less dramatic for the molecular-only node-dated phylogeny (35.2 times the 260 

original rate) and the morphology and molecular node-dated phylogeny (19.9 times the 261 

original rate).  On the morphology and molecular node-dated tree with only extant taxa there 262 

is also a further increase (37.3 times the original rate) leading to the Proboscidea plus Sirenia. 263 
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Impact of prior information 264 

The addition of outgroups of variable mass (0.1 to 20 kg) had little impact on estimates of 265 

ancestral mass for Afrotheria (Supplementary Table S2 and S3) or rates through time 266 

(Supplementary Figure S7). Even when the outgroup represents a body mass that is much 267 

larger than those known from the fossil record (e.g., 20 kg), the mass estimates from ancestral 268 

Afrotheria are relatively small (~ 2 kg), indicating the stability of the reconstructed patterns 269 

in this study. 270 

Discussion 271 

Congruent patterns of body mass evolution are produced when fossil tips are included or 272 

excluded. The addition of fossil tips to analyses has little effect on the analyses of ancestral 273 

mass estimation and rates of body mass evolution through time. A number of studies have 274 

argued that fossils are vital to understand patterns of body mass evolution [6,8-10], but results 275 

from analyses in Afrotheria are consistent if fossil tips are included or excluded from 276 

phylogenies. The minor impact of fossil tips on macroevolutionary interpretations in this case 277 

may be expected: the afrotherian fossil record is biased towards Paenungulata [34], and none 278 

of the fossils in the clades is larger or smaller than extant members of those clades. 279 

Furthermore, there is generally a bias in the fossil record of the two groups: with the 280 

exception of Macroscelidea, the fossil record of Afroinsectiphilia is not as comprehensive as 281 

the record of Paenungulata [34], but there is fossil representation of all the major clades 282 

included in our analyses. There is no evidence to suggest that earlier afroinsectiphilians 283 

(excluding tubulidentates) were much larger than today’s species, whereas some extinct 284 

hyraxes were indeed much larger than their extant relatives. Fossils, or at least morphological 285 

character data, do have large impacts on the topology of Afrotherian phylogeny. However, 286 

these differences in topology do not have a large impact on analyses of body mass evolution 287 

in this study, but instead show how different data types and fossil inclusion can change our 288 

interpretations of evolution. More evident than the inclusion or exclusion of fossils is the 289 

impacts of model selection. 290 

Despite the minor impact of fossils in estimating ancestral body size in the Afrotheria, we do 291 

not suggest that these results should be taken as grounds to ignore fossil data. Previous 292 

studies have demonstrated the need for phylogenetically informed sampling for ancestral 293 

state reconstruction [50]. Recent studies have suggested the results here – that fossils have 294 

little impact upon reconstructions of morphological evolution - may not be applicable to other 295 

clades, such as birds [51], or even all mammals [6,8-10]. As noted above, the distribution of 296 

fossil tips and sizes may explain their minor impact in this specific case. The omission or 297 

misplacement of taxa, whether fossil or extant, can effect estimates of evolutionary rates and 298 

ancestral states. Moreover, our results suggest that inclusion of fossil data may increase 299 

confidence in ancestral state estimates. Fossils may still be very important in studies of body 300 

mass evolution, but exploration of alternative evolutionary models can also be important. A 301 

recent study has shown that careful model selection can elucidate body mass evolution 302 

patterns from extant data that have previously only been shown in fossils [52]; here we 303 

support that the evolutionary model can have a large impact on our interpretations of 304 
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evolution.  It will often be difficult to judge a priori whether fossils or the evolutionary 305 

model will matter more and as such both should be assessed wherever possible. 306 

The largest difference in reconstructions of body mass evolution in Afrotheria is not when 307 

fossils are included or excluded, but when comparing alternative evolutionary models. 308 

Mesozoic mammals, including early Placentalia, have been shown to be generally small (~80 309 

g) [1] and high morphological rates of change are found early in the evolution of clades (Raia 310 

et al. 2013). In contrast, genomic studies have indicated a larger ancestral mass for Afrotheria 311 

[4,53]. Our results are congruent with the fossil record, whether fossils or included or 312 

excluded (figure 2). Furthermore, other studies have found similarly small ancestral sizes for 313 

the Afrotheria (0.36 kg) using the same method (StableTraits) but different data [25]. There is 314 

a ~10 fold difference in estimates from StableTraits and BM (Table 2); this suggests that 315 

model selection, rather than inclusion of fossils has a greater impact in reconstructed 316 

ancestral body mass. However, it should be noted that in all cases the confidence intervals for 317 

StableTraits and BM ancestral size estimates overlap (Table 2). Whilst there are general 318 

difficulties in reconstructing ancestral mass [14-15], fossil tips do not necessarily impact on 319 

either the best fitting evolutionary model or the ancestral state estimates. Our results appear 320 

to be robust to the possibility of undiscovered afrotherian species with extreme body sizes as 321 

demonstrated by the very minor effect of manipulating a proxy prior on the root.  The main 322 

effect of an informed prior, such as previous estimates (e.g., [4]), is to tighten the confidence 323 

intervals for ancestral state estimates. 324 

Previously total-evidence data have been shown to produce both younger and older ages than 325 

node dating [27, 54], but other studies (e.g. [55]) are congruent with the results here in that 326 

the majority of node ages are older in the total-evidence analyses (see electronic 327 

supplementary material, figure S5). Here the evidence strongly suggests that fossils are 328 

pushing median dates back in time; a similar result has been found generally for all mammals 329 

[55]. While these ages are larger than large-scale molecular estimates [56], they are not 330 

implausible [55] and there is still an overlap in the posterior distributions of ages on the major 331 

nodes and root; thus there is no significant effect from the morphological matrix on 332 

divergence time estimation. Additional studies that have employed the fossilised birth-death 333 

model [46] have found that employing a method that allows for sampling fossils as direct 334 

ancestors generally results in age estimates that are more congruent with the fossil record [46, 335 

57-59]. However, many of these studies (e.g. [57]) find that traditional node-constraints can 336 

result in ages that are congruent with the fossil record, which appears to be the case here. 337 

Conclusions 338 

Fossils have a vital role to play in the understanding of macroevolution. However, it is 339 

important to note that the addition of fossils will not always produce results that contradict 340 

analyses based on extant taxa. Data from fossils, in some cases, will agree with data from 341 

living species, so other factors, such as the choice of evolutionary model, are likely to be also 342 

important when elucidating patterns of evolution. Therefore, it may be possible to trust 343 

analyses based on extant taxa only, but incorporating fossil information and careful model 344 

selection can increase confidence in our interpretations. 345 
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 Total-evidence Node-Dating  

(molecular and  

morphological data) 

Node Dating 

(molecular only) 

Afrotheria 106.3 (91.3, 123.9) 96.7 (78.6, 116.9) 92.9 (74.3, 114.5) 

Paenungulata 99.3 (85.3, 115.4) 61.5 (55, 74.8) 61.8 (55, 76.2) 

Afroinsectiphilia NA NA 90.2 (71.6, 110.7) 

Proboscidea 29.5 (18.9, 41.1) 23.9 (14.6, 33.8) 24.5 (15.3, 34.5)  

Sirenia 29.6 (17.6, 43.9) 26.9 (15.9, 39.7) 27.3 (15.5, 39.4) 

Hyracoidea 21.9 (12.1, 33.3) 18.5 (8.4, 29.1) 18.7 (8.4, 28.8) 

Afrosoricida 91.6 (77.1, 109.0) 89.5 (71.5, 109.1) 85.1 (67.3, 106.1) 

Tenrecidae 77.5 (62.2, 92.2) 78.8 (62.0, 97.8) 76.7 (59.5, 96.3) 

Chrysochloridae 34.3 (23.4, 46.7) 39.6 (27.6, 53.3) 40.4 (27.8, 56.0) 

Macroscelidea 57.8 (45.0, 71.9) 75.2 (58.0, 95.7) 77.5 (58.6, 98.4) 

 517 

Table 1 Dates from the total-evidence analyses are older than the node-dating analysis but 518 

the 95% posterior density shows overlap for crown Afrotheria.  519 

Phylogeny StableTraits Brownian motion Best-fitting 

model 

∆BPIC 

Total Evidence 0.10 (0.02, 0.95) 1.45 (0.31, 6.82) StableTraits 21.76725 

Extant Only 0.13 (0.02, 12.48) 1.59 (0.28, 8.94) StableTraits 53.5555 

Node Dating 

(molecular only) 

0.11 (0.02, 761.4) 0.77 (0.14-3.99) StableTraits 57.42925 

Node Dating 

(molecular and 

morphological 

data) 

0.09 (0.02, 0.62) 0.53 (0.10, 2.75) StableTraits 42.499 

 520 

Table 2. Reconstruction of ancestral body size using StableTraits indicate the minimal 521 

impact of fossil tips on root mass estimates.  522 

 523 

  524 
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Figure 1. The dated total-evidence phylogeny of the Afrotheria indicates a late Cretaceous 525 

origin for Afrotheria. Tubulidentata and Macroscelidea form successive outgroups to the 526 

Paenungulata (Sirenia, Proboscidea, Hyracoidea), and so the Afroinsectiphilia 527 

(Macroscelidea, Afrosoricida) is non-monophyletic. All major clades are highlighted: 528 

Proboscidea (purple), Sirenia (brown), Hyracoidea (navy), Tubulidentata (red), 529 

Macroscelidea (yellow), Chrysochloridae (blue), and Tenrecidae (green). Animal images 530 

public domain, except for the following from Wikipedia, and covered by Creative Commons 531 

licenses that are attributed to the following authors: Elephant (Ikiwaner), Hyrax (D. Gordon 532 

E. Robertson), Aardvark (Masur), Elephant shrew (Joey Makalintal), Golden mole (Hohum), 533 

and Tenrec (Wilfried Berns). 534 

 535 

Figure 2. The effects of model selection are more evident than the inclusion of fossils. If 536 

fossils are included or excluded, there is a large increase in the morphological rate of 537 

evolution leading to the Paenungulata plus Tubulidentata (red branch) (a,b). The 538 

reconstructed body size is comparable between the total evidence and neontological studies 539 

that use the StableTraits models (c,d), and BM model (e,f). 540 
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(a)                                                                    (b)           

(c)                                                                    (d)           

(e)                                                                  (f)           
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