996 research outputs found
A Linear-Nonlinear Formulation of Einstein Equations for the Two-Body Problem in General Relativity
A formulation of Einstein equations is presented that could yield advantages
in the study of collisions of binary compact objects during regimes between
linear-nonlinear transitions. The key idea behind this formulation is a
separation of the dynamical variables into i) a fixed conformal 3-geometry, ii)
a conformal factor possessing nonlinear dynamics and iii) transverse-traceless
perturbations of the conformal 3-geometry.Comment: 7 pages, no figure
Protein Patterns of Developing Mitochondria at the Onset of Germination in Maize (Zea mays L.)
The respiration increase during seed imbibition and the onset of germination is usually accompanied by significant mitochondriogenesis. The latter process
is manifested in characteristic development of organelle ultrastructure. Changes in cytochrome spectra and respiration sensitivity to the electron transport inhibitors seem to suggest some rearrangement in the respiration chain. An increase in the ratio of enzyme markers of mitochondrial matrix and inner membrane indicates the relative accumulation of matrix material. However, it is not clear whether these developmental changes reflect differential de novo synthesis of mitochondrial proteins or merely rearrangements within mitochondria pre-existing in dormant seeds. Two experimental approaches were initiated to answer this question. Quantitative immunochemical methods were applied in order to demonstrate changes in protein ratios and/or the origin of new antigens. Dual-label techniques were combined with SDS-disc-electrophoresis to evaluate de novo formation
of polypeptides. The results show that alterations in the protein patterns may be attributed to the differential changes in synthesis and degradation rates of several groups of mitochondrial polypeptides
Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice
Despite being initially identified in mice, little is known about the sites of production of members of the BPI fold (BPIF) containing (PLUNC) family of putative innate defence proteins in this species. These proteins have largely been considered to be specificaly expressed in the respiratory tract, and we have recently shown that they exhibit differential expression in the epithelium of the proximal airways. In this study, we have used species-specific antibodies to systematically localize two members of this protein family; BPIFA1 (PLUNC/SPLUNC1) and BPIFB1 (LPLUNC1) in adult mice. In general, these proteins exhibit distinct and only partially overlapping localization. BPIFA1 is highly expressed in the respiratory epithelium and Bowman’s glands of the nasal passages, whereas BPIFB1 is present in small subset of goblet cells in the nasal passage and pharynx. BPIFB1 is also present in the serous glands in the proximal tongue where is co-localised with the salivary gland specific family member, BPIFA2E (parotid secretory protein) and also in glands of the soft palate. Both proteins exhibit limited expression outside of these regions. These results are consistent with the localization of the proteins seen in man. Knowledge of the complex expression patterns of BPIF proteins in these regions will allow the use of tractable mouse models of disease to dissect their function
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation
A rigorous three-dimensional relativistic equation satisfied by two-gluon
bound states is derived from the QCD with massive gluons. With the gluon fields
and the quark fields being expanded in terms of the gluon multipole fields and
the spherical Dirac spinors respectively, the equation is well established in
the angular momentum representation and hence is much convenient for solving
the problem of two-gluon glueball spectra. In particular, the interaction
kernel in the equation is exactly derived and given a closed expression which
includes all the interactions taking place in the two-gluon glueballs. The
kernel contains only a few types of Green's functions and commutators.
Therefore, it is not only easily calculated by the perturbation method, but
also provides a suitable basis for nonperturbative investigations
Mechanical characterisation of a fibre reinforced oxide/oxide ceramic matrix composite
Monotonic tension, fatigue and creep experiments were conducted on an oxide/oxide ceramic matrix composite over the range of temperature 20–1200 °C. The role of continuous fibre reinforcement, differential thermal expansion, stress redistribution interactions between fibres and matrix and the influence of inherent processing defects are all considered when describing the deformation and ultimate mechanical failure of these systems
The discontinuous nature of chromospheric activity evolution
Chromospheric activity has been thought to decay smoothly with time and,
hence, to be a viable age indicator. Measurements in solar type stars in open
clusters seem to point to a different conclusion: chromospheric activity
undergoes a fast transition from Hyades level to that of the Sun after about 1
Gyr of main--sequence lifetime and any decaying trend before or after this
transition must be much less significant than the short term variations.Comment: 6 pages, 1 figure, to be published in Astrophysics and Space Scienc
Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity
This paper reports on our effort in modeling realistic astrophysical neutron
star binaries in general relativity. We analyze under what conditions the
conformally flat quasiequilibrium (CFQE) approach can generate
``astrophysically relevant'' initial data, by developing an analysis that
determines the violation of the CFQE approximation in the evolution of the
binary described by the full Einstein theory. We show that the CFQE assumptions
significantly violate the Einstein field equations for corotating neutron stars
at orbital separations nearly double that of the innermost stable circular
orbit (ISCO) separation, thus calling into question the astrophysical relevance
of the ISCO determined in the CFQE approach. With the need to start numerical
simulations at large orbital separation in mind, we push for stable and long
term integrations of the full Einstein equations for the binary neutron star
system. We demonstrate the stability of our numerical treatment and analyze the
stringent requirements on resolution and size of the computational domain for
an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.
Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction
We perform an analysis of a recent spatial version of the classical
Lotka-Volterra model, where a finite scale controls individuals' interaction.
We study the behavior of the predator-prey dynamics in physical spaces higher
than one, showing how spatial patterns can emerge for some values of the
interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure
(Sub)mm Interferometry Applications in Star Formation Research
This contribution gives an overview about various applications of (sub)mm
interferometry in star formation research. The topics covered are molecular
outflows, accretion disks, fragmentation and chemical properties of low- and
high-mass star-forming regions. A short outlook on the capabilities of ALMA is
given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets
from Young Star: High Angular Resolution Observations". A high-resolution
version of the paper can be found at
http://www.mpia.de/homes/beuther/papers.htm
- …