85,064 research outputs found

    Methods of resistance estimation in permanent magnet synchronous motors for real-time thermal management

    Get PDF
    Real-time thermal management of electrical ma- chines relies on sufficiently accurate indicators of internal tem- perature. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes two techniques which can be applied to detect the winding resistance, through ‘Fixed Angle’ and ‘Fixed Mag- nitude’ current injection. Two further methods are described which discriminate injected current and voltages from motoring currents and voltages: ‘Unipolar’ and ‘Bipolar’ separation. These enable the resistance to be determined, and hence the winding temperature in permanent-magnet machines. These methods can be applied under load, and in a manner that does not disturb motor torque or speed. The method distinguishes between changes in the electro-motive force (EMF) constant and the resistive voltage. This paper introduces the techniques, whilst a companion paper covers the application of one of the methods to a PMSM drive system

    Magnetic bearings for free-piston Stirling engines

    Get PDF
    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC

    Wave Energy Amplification in a Metamaterial based Traveling Wave Structure

    Full text link
    We consider the interaction between a particle beam and a propagating electromagnetic wave in the presence of a metamaterial. We show that the introduction of a metamaterial gives rise to a novel dispersion curve which determines a unique wave particle relationship, via the frequency dependence of the metamaterial and the novel ability of metamaterials to exhibit simultaneous negative permittivity and permeability. Using a modified form of Madey's theorem we find that the novel dispersion of the metamaterial leads to a amplification of the EM wave power

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    Transformer Oil Passivation and Impact of Corrosive Sulphur

    No full text
    In recent years a significant volume of research has been undertaken in order to understand the recent failures in oil insulated power apparatus due to deposition of copper sulphide on the conductors and in the insulation paper. Dibenzyl Disulfide (DBDS) has been found to be the leading corrosive sulphur compound in the insulation oil [1]. The process of copper sulphide formation and the deposition in the paper is still being investigated, but a recently proposed method seems to be gaining some confidence [1]. This method suggests a two-step process; initially the DBDS and some oil soluble copper complexes are formed. Secondly the copper complexes are absorbed in the paper insulation, where they then decompose into copper sulphide [2]. The most commonly used mitigating technique for corrosive sulphur contaminated oil is passivation, normally using Irgamet 39 or 1, 2, 3-benzotriazole (BTA). The passivator is diluted into the oil to a concentration of around 100ppm, where it then reacts with the copper conductors to form a complex layer around the copper, preventing it from interacting with DBDS compounds and forming copper sulphide. This research project will investigate the electrical properties of HV transformers which have tested positive for corrosive sulphur, and the evolution of those properties as the asset degrades due to sulphur corrosion. Parallel to this the long term properties of transformers with passivated insulation oil will be analysed in order to understand the passivator stability and whether it is necessary to keep adding the passivator to sustain its performance. Condition monitoring techniques under investigation will include dielectric spectroscopy, frequency response analysis, recovery voltage method (aka interfacial polarisation) amongst others. Partial discharge techniques will not be investigated, as the voltage between the coil plates is low and therefore it will not contribute significantly to the overall insulation breakdown, in corrosive oil related faults [3]. The goal of this research is to establish key electrical properties in both passivated and non-passivated power transformers that demonstrate detectable changes as the equipment degrades due to the insulation oil being corrosive

    New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes

    Get PDF
    The Middle Eocene Climatic Optimum (MECO) was a warming event that interrupted the long-term Eocene cooling trend. While this event is well documented at high southern and mid-latitudes, it is poorly known from low latitudes and its timing and duration are not well constrained because of problems of hiati, microfossil preservation and weak magnetic polarity in key sedimentary sections. Here, we report the results of a study designed to improve the bio-, magneto- and chemostratigraphy of the MECO interval using high-resolution records from two low-latitude sections in the Atlantic Ocean, Ocean Drilling Program (ODP) Sites 1051 and 1260. We present the first detailed benthic foraminiferal stable isotope records of the MECO from the low latitudes as well as the biostratigraphic counts of Orbulinoides beckmanni and new magnetostratigraphic results. Our data demonstrate a ~ 750 kyr-long duration for the MECO characterized by increasing δ13C and decreasing δ18O, with minimum δ18O values lasting ~ 40 kyr at 40.1 Ma coincident with a short-lived negative δ13C excursion. Thereafter, δ18O and δ13C values recover rapidly. The shift to minimum δ18O values at 40.1 Ma is coincident with a marked increase in the abundance of the planktonic foraminifera O. beckmanni, consistent with its inferred warm-water preference. O. beckmanni is an important Eocene biostratigraphic marker, defining planktonic foraminiferal Zone E12 with its lowest and highest occurrences (LO and HOs). Our new records reveal that the LO of O. beckmanni is distinctly diachronous, appearing ~ 500 kyr earlier in the equatorial Atlantic than in the subtropics (40.5 versus 41.0 Ma). We also show that, at both sites, the HO of O. beckmanni at 39.5 Ma is younger than the published calibrations, increasing the duration of Zone E12 by at least 400 kyr. In accordance with the tropical origins of O. beckmanni, this range expansion to higher latitudes may have occurred in response to sea surface warming during the MECO and subsequently disappeared with cooling of surface waters
    corecore