621 research outputs found

    3DHZETRN: Inhomogeneous Geometry Issues

    Get PDF
    Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here

    Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator

    Get PDF
    In Escherichia coli, protein degradation in synthetic circuits is commonly achieved by the ssrA-tagged degradation system. In this work, we show that the degradation kinetics for the green fluorescent protein fused with the native ssrA tag in each cell exhibits the zeroth-order limit of the Michaelis–Menten kinetics, rather than the commonly assumed first-order. When measured in a population, the wide distribution of protein levels in the cells distorts the true kinetics and results in a first-order protein degradation kinetics as a population average. Using the synthetic gene-metabolic oscillator constructed previously, we demonstrated theoretically that the zeroth-order kinetics significantly enlarges the parameter space for oscillation and thus enhances the robustness of the design under parametric uncertainty

    Diagonal forms of incidence matrices associated with t-uniform hypergraphs

    Get PDF
    We consider integer matrices N_t(h) whose rows are indexed by the t-subsets of an n-set and whose columns are all images of a particular column h under the symmetric group S_n. Earlier work has determined a diagonal form for N_t(h) when h has at least t ‘isolated vertices’ and the results were applied to the binary case of a zerosum Ramsey-type problem of Alon and Caro involving t-uniform hypergraphs. This paper deals with the case that h does not have as many as t isolated vertices

    Imaging the Thermal and Kinematic Sunyaev-Zel'dovich Effect Signals in a Sample of Ten Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities

    Get PDF
    We have imaged the Sunyaev-Zel'dovich (SZ) effect signals at 140 and 270 GHz towards ten galaxy clusters with Bolocam and AzTEC/ASTE. We also used Planck data to constrain the signal at large angular scales, Herschel-SPIRE images to subtract the brightest galaxies that comprise the cosmic infrared background (CIB), Chandra imaging to map the electron temperature TeT_e of the intra-cluster medium (ICM), and HST imaging to derive models of each galaxy cluster's mass density. The galaxy clusters gravitationally lens the background CIB, which produced an on-average reduction in brightness towards the galaxy clusters' centers after the brightest galaxies were subtracted. We corrected for this deficit, which was between 5-25% of the 270 GHz SZ effect signal within R2500R_{2500}. Using the SZ effect measurements, along with the X-ray constraint on TeT_e, we measured each galaxy cluster's average line of sight (LOS) velocity vzv_z within R2500R_{2500}, with a median per-cluster uncertainty of +-700 km/s. We found an ensemble-mean of 430+-210 km/s, and an intrinsic cluster-to-cluster scatter σint\sigma_{int} of 470+-340 km/s. We also obtained maps of vzv_z over each galaxy cluster's face with an angular resolution of 70". All four galaxy clusters previously identified as having a merger oriented along the LOS showed an excess variance in these maps at a significance of 2-4σ\sigma, indicating an internal vzv_z rms of \gtrsim1000 km/s. None of the six galaxy clusters previously identified as relaxed or plane of sky mergers showed any such excess variance.Comment: Accepted for publication in Ap

    Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry

    Get PDF
    Citation: Wilson JW, Slaba TC, Badavi FF, Reddell BD, and Bahadori AA 2015 Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry NASA/TP-2015-218980 NASA Langley Research Center: Hampton, VA http://ntrs.nasa.gov/search.jsp?R=20160001628The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency

    Multivariate patterns of brain-behavior associations across the adult lifespan

    Get PDF
    The nature of brain-behavior covariations with increasing age is poorly understood. In the current study, we used a multivariate approach to investigate the covariation between behavioral-health variables and brain features across adulthood. We recruited healthy adults aged 20–73 years-old (29 younger, mean age = 25.6 years; 30 older, mean age = 62.5 years), and collected structural and functional MRI (s/fMRI) during a resting-state and three tasks. From the sMRI, we extracted cortical thickness and subcortical volumes; from the fMRI, we extracted activation peaks and functional network connectivity (FNC) for each task. We conducted canonical correlation analyses between behavioral-health variables and the sMRI, or the fMRI variables, across all participants. We found significant covariations for both types of neuroimaging phenotypes (ps = 0.0004) across all individuals, with cognitive capacity and age being the largest opposite contributors. We further identified different variables contributing to the models across phenotypes and age groups. Particularly, we found behavior was associated with different neuroimaging patterns between the younger and older groups. Higher cognitive capacity was supported by activation and FNC within the executive networks in the younger adults, while it was supported by the visual networks’ FNC in the older adults. This study highlights how the brain-behavior covariations vary across adulthood and provides further support that cognitive performance relies on regional recruitment that differs between older and younger individuals

    Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    Get PDF
    Citation: Slaba TC, Wilson JW, Badavi FF, Reddell BD, and Bahadori AA 2015 Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Ray-Trace Geometry NASA/TP-2015-218994 NASA Langley Research Center: Hampton, VA http://ntrs.nasa.gov/search.jsp?R=20160002213The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation is under development. In the present report, new algorithms for light ion and neutron propagation with well-defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations to verify the solution methodology. The code will be available through the software system, OLTARIS, for shield design and validation and provides a basis for personal computer software capable of space shield analysis and optimization

    A 3DHZETRN Code in a Spherical Uniform Sphere with Monte Carlo Verification

    Get PDF
    Citation: Wilson JW, Slaba TC, Badavi FF, Reddell BD, and Bahadori AA 2014 A 3DHZETRN Code in a Spherical Uniform Sphere with Monte Carlo Verification NASA/TP-2014-218271 NASA Langley Research Center: Hampton, VA http://ntrs.nasa.gov/search.jsp?R=20140006706The computationally efficient HZETRN code has been used in recent trade studies for lunar and Martian exploration and is currently being used in the engineering development of the next generation of space vehicles, habitats, and extra vehicular activity equipment. A new version (3DHZETRN) capable of transporting High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation is under development. In the present report, new algorithms for light ion and neutron propagation with well-defined convergence criteria in 3D objects is developed and tested against Monte Carlo simulations to verify the solution methodology. The code will be available through the software system, OLTARIS, for shield design and validation and provides a basis for personal computer software capable of space shield analysis and optimization
    corecore