1,582 research outputs found

    Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    Get PDF
    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves

    Tandem Fan Applications in Advanced STOVL Fighter Configurations

    Get PDF
    The series/parallel tandem fan engine is evaluated for application in advanced STOVL supersonic fighter aircraft. Options in engine cycle parameters and design of the front fan flow diverter are examined for their effects on engine weight, dimensions, and other factors in integration of the engine with the aircraft. Operation of the engine in high-bypass flow mode during cruise and loiter flight is considered as a means of minimizizng fuel consumption. Engine thrust augmentation by burning in the front fan exhaust is discussed. Achievement of very sort takeoff with vectored thrust in briefly reviewed for tandem fan engine configurations with vectorable front fan nozzles. Examples are given of two aircraft configuration planforms, a delta-canard, and a forward-swept wing, to illustrate the major features. design considerations, and potential performance of the tandem fan installation in each. Full realization of the advantages of tandem fan propulsion are found to depend on careful selection of the aircraft configuration, since integration requirements can strongly influence the engine performance

    Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    Get PDF
    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits

    The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    Get PDF
    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons

    A Study of a Magnetic Cloud Propagating Through Large-Amplitude Alfven Waves

    Get PDF
    We discuss Wind observations of a long and slow magnetic cloud (MC) propagating through large-amplitude Alfvén waves (LAAWs). The MC axis has a strong component along GSE X, as also confirmed by a Grad-Shafranov reconstruction. It is overtaking the solar wind at a speed roughly equal to the upstream Alfvén speed, leading to a weak shock wave 17 hr ahead. We give evidence to show that the nominal sheath region is populated by LAAWs: (i) a well-defined de Hoffmann-Teller frame in which there is excellent correlation between the field and flow vectors, (ii) constant field and total pressure, and (iii) an Alfvén ratio (i.e., ratio of kinetic-to-magnetic energy of the fluctuations) near unity at frequencies much lower than the ion cyclotron frequency in the spacecraft frame. In the region where the LAAWs approach the MC\u27s front boundary there are field and flow discontinuities. At the first, magnetic reconnection is taking place, as deduced from a stress balance test (Walén test). This severs connection of some field lines to the Sun and the solar wind strahl disappears. There follows a 2-hr interval where the magnetic field strength is diminished while pressure balance is maintained. Here the bidirectionality of the suprathermal electron flows is intermittently disrupted. This interval ends with a slow expansion fan downstream of which there is a dropout of halo electrons just inside the front boundary of the MC. This study illustrates an untypical case of a slow MC interacting with LAAWs in the slow solar wind
    corecore