4,025 research outputs found
OPTIMAL TESTING STRATEGIES FOR GENETICALLY MODIFIED WHEAT
A stochastic optimization model was developed to determine optimal testing strategies, costs, and risks of a dual marketing system. The model chooses the testing strategy (application, intensity, and tolerance) that maximizes utility (minimizes disutility) of additional system costs due to testing and quality loss and allows simulation of the risk premium required to induce grain handlers to undertake a dual marketing system versus a Non-GM system. Cost elements including those related to testing, quality loss, and a risk premium were estimated for a model representing a grain export chain. Uncertainties were incorporated and include test accuracy, risk of adventitious commingling throughout, and variety declaration. Sensitivities were performed for effects of variety risks, penalty differentials, re-elevation discounts, import tolerances, variety declaration, risk aversion, GM adoption, and domestic end-user.Segregation, Testing, Tolerance, Genetically Modified, Wheat, Risk Premium, Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,
Recommended from our members
Shear-Wave Splitting and Mantle Flow Beneath the Colorado Plateau and its Boundary with the Great Basin
Shear-wave splitting measurements from SKS and SKKS phases show fast polarization azimuths that are subparallel to North American absolute plate motion within the central Rio Grande Rift (RGR) and Colorado Plateau (CP) through to the western rim of the CP, with anisotropy beneath the CP and central RGR showing a remarkably consistent pattern with a mean fast azimuth of 4 degrees +/- degrees 6 E of N. Approaching the rim from the southeast, fast anisotropic directions become north-northeast-south-southwest (NNE-SSW), rotate counter clockwise to north-south in the CP-GB transition, and then to NNW-SSE in the western Great Basin ( GB). This change is coincident with uppermost mantle S-wave velocity perturbations that vary from +4% beneath the western CP and the eastern edge of the Marysvale volcanic field to about -8% beneath the GB. Corresponding delay times average 1.5 sec beneath the central CP, decrease to approximately 0.8 sec near the CP-GB transition, and increase to about 1.2 sec beneath the GB. For the central CP, we suggest anisotropy predominantly controlled by North American plate motion above the asthenosphere. The observed pattern of westward-rotating anisotropy from the western CP through the CP-GB transition may be influenced to asthenospheric flow around a CP lithospheric keel and/or by vertical flow arising from edge-driven small-scale convection. The anisotropic transition from the CP to the GB thus marks a first-order change from absolute plate motion dominated lithosphere-asthenosphere shear to a new regime controlled by regional flow processes. The NNW-SSE anisotropic fast directions of split SKS waves in the eastern GB area are part of a broad circular pattern of seismic anisotropic fast direction in the central GB that has recently been hypothesized to be due to toroidal flow around the sinking Juan de Fuca-Gorda slab.National Science Foundation EAR 9706094, 9707188, 9707190, 0207812Los Alamos National Laboratory Institute of Geophysics and Planetary PhysicsNational Science Foundation Cooperative EAR-000430Department of Energy National Nuclear Security AdministrationGeological Science
Role of plant relatedness in plant–soil feedback dynamics of sympatric Asclepias species
Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two-way interactions between plants and soils are collectively known as plant–soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well-understood. We examined plant–soil feedback responses of Asclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa, A. viridis, A. sullivantii, and A. verticillata, respectively). Plant–soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi. Asclepias syriaca produced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific-conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization of A. syriaca roots was reduced when grown in soils conditioned by A. verticillata, compared with colonization in plants grown in soil conditioned by any of the other three Asclepias species, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant–soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well-understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases
Climate Affects Plant-Soil Feedback of Native and Invasive Grasses: Negative Feedbacks in Stable but Not in Variable Environments
This work is licensed under a Creative Commons Attribution 4.0 International License.The plant-soil feedback framework allows researchers to target the interaction of plants and root-associated microbes and to determine its interplay on plant-plant interactions. Plant-soil feedbacks in terrestrial ecology are well-documented, but the strength and direction of feedbacks as influenced by abiotic environmental factors, such as temperature and soil moisture, has not been fully explored. In our study, we examined plant-soil feedback responses of both cool- and warm-season native and non-native grasses to elevated temperatures (ambient and +5°C) and soil moisture (100 and 75% field capacity). In a previous experiment, grasses were grown under temperature and soil moisture conditions similar to our current study. The resultant trained soil communities served as the inoculum sources for our current experiment. We found that consistent training and experimental temperatures resulted in negative PSF, where plants produced greater biomass in soils conditioned by heterospecifics. However, the direction of PSF was reversed when training and experimental conditions were mismatched. That is, when training and experimental temperatures mirrored one another, negative PSF occurred, suggesting coexistence between the two species is likely under these conditions. However, when only training or testing temperatures were elevated, positive PSF were detected, favoring the non-native species. These alterations in plant-soil feedbacks were relatively consistent across pairings of warm- and cool-season grasses. Overall, our results indicate inconsistent year-to-year environmental conditions, such as extreme temperatures, may undermine the stabilizing forces of negative PSF and favor of non-native grasses
The X-ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation
We reanalyze the deep Chandra observations of the M87 jet, first examined by
Wilson & Yang (2002). By employing an analysis chain that includes image
deconvolution, knots HST-1 and I are fully separated from adjacent emission. We
find slight but significant variations in the spectral shape, with values of
ranging from . We use VLA radio observations, as well
as HST imaging and polarimetry data, to examine the jet's broad-band spectrum
and inquire as to the nature of particle acceleration in the jet. As shown in
previous papers, a simple continuous injection model for synchrotron-emitting
knots, in which both the filling factor, , of regions within which
particles are accelerated and the energy spectrum of the injected particles are
constant, cannot account for the X-ray flux or spectrum. Instead, we propose
that is a function of position and energy and find that in the inner
jet, , and
in knots A and B, , where is the emitted photon energy and and is the
emitting electron energy. In this model, the index of the injected electron
energy spectrum () is at all locations in
the jet, as predicted by models of cosmic ray acceleration by ultrarelativistic
shocks. There is a strong correlation between the peaks of X-ray emission and
minima of optical percentage polarization, i.e., regions where the jet magnetic
field is not ordered. We suggest that the X-ray peaks coincide with shock waves
which accelerate the X-ray emitting electrons and cause changes in the
direction of the magnetic field; the polarization is thus small because of beam
averaging.Comment: Accepted for publication in ApJ; 21 pages, 9 figures, 2 tables;
abstract shortened for astro-ph; Figures 1, 7 and 8 at reduced resolutio
Numerical models of irrotational binary neutron stars in general relativity
We report on general relativistic calculations of quasiequilibrium
configurations of binary neutron stars in circular orbits with zero vorticity.
These configurations are expected to represent realistic situations as opposed
to corotating configurations. The Einstein equations are solved under the
assumption of a conformally flat spatial 3-metric (Wilson-Mathews
approximation). The velocity field inside the stars is computed by solving an
elliptical equation for the velocity scalar potential. Results are presented
for sequences of constant baryon number (evolutionary sequences). Although the
central density decreases much less with the binary separation than in the
corotating case, it still decreases. Thus, no tendency is found for the stars
to individually collapse to black hole prior to merger.Comment: Minor corrections, improved figure, 5 pages, REVTeX, Phys. Rev. Lett.
in pres
The GALEX View of "Boyajian's Star" (KIC 8462852)
The enigmatic star KIC 8462852, informally known as "Boyajian's Star", has
exhibited unexplained variability from both short timescale (days) dimming
events, and years-long fading in the Kepler mission. No single physical
mechanism has successfully explained these observations to date. Here we
investigate the ultraviolet variability of KIC 8462852 on a range of timescales
using data from the GALEX mission that occurred contemporaneously with the
Kepler mission. The wide wavelength baseline between the Kepler and GALEX data
provides a unique constraint on the nature of the variability. Using 1600
seconds of photon-counting data from four GALEX visits spread over 70 days in
2011, we find no coherent NUV variability in the system on 10-100 second or
months timescales. Comparing the integrated flux from these 2011 visits to the
2012 NUV flux published in the GALEX-CAUSE Kepler survey, we find a 3% decrease
in brightness for KIC 8462852. We find this level of variability is
significant, but not necessarily unusual for stars of similar spectral type in
the GALEX data. This decrease coincides with the secular optical fading
reported by Montet & Simon (2016). We find the multi-wavelength variability is
somewhat inconsistent with typical interstellar dust absorption, but instead
favors a R = 5.0 0.9 reddening law potentially from circumstellar
dust.Comment: 8 pages, 4 figures, ApJ Accepte
Relief of chronic pain associated with increase in midline frontal theta power
INTRODUCTION: There is a need to identify objective cortical electrophysiological correlates for pain relief that could potentially contribute to a better pain management. However, the field of developing brain biomarkers for pain relief is still largely underexplored.
OBJECTIVES: The objective of this study was to investigate cortical electrophysiological correlates associated with relief from chronic pain. Those features of pain relief could serve as potential targets for novel therapeutic interventions to treat pain.
METHODS: In 12 patients with chronic pain in the upper or lower extremity undergoing a clinically indicated nerve block procedure, brain activity was recorded by means of electroencephalogram before and 30 minutes after the nerve block procedure. To determine the specific cortical electrophysiological correlates of relief from chronic pain, 12 healthy participants undergoing cold-pressor test to induce experimental acute pain were used as a control group. The data were analyzed to characterize power spectral density patterns of pain relief and identify their source generators at cortical level.
RESULTS: Chronic pain relief was associated with significant delta, theta, and alpha power increase at the frontal area. However, only midfrontal theta power increase showed significant positive correlation with magnitude of reduction in pain intensity. The sources of theta power rebound were located in the left dorsolateral prefrontal cortex (DLPFC) and midline frontal cortex. Furthermore, theta power increase in the midline frontal cortex was significantly higher with chronic vs acute pain relief.
CONCLUSION: These findings may provide basis for targeting chronic pain relief via modulation of the midline frontal theta oscillations
Identification of p38 MAPK as a novel therapeutic target for Friedreich\u27s ataxia.
Friedreich ataxia (FRDA) is an autosomal recessive neuro- and cardio-degenerative disorder caused by decreased expression of frataxin, a protein that localizes to mitochondria and is critical for iron-sulfur-cluster (ISC) assembly. There are no proven effective treatments for FRDA. We previously screened a random shRNA library and identified a synthetic shRNA (gFA11) that reverses the growth defect of FRDA cells in culture. We now report that gFA11 decreases cytokine secretion in primary FRDA fibroblasts and reverts other changes associated with cell senescence. The gene-expression profile induced by gFA11 is remarkably similar to the gene-expression profile induced by the p38 MAPK inhibitor SB203580. We found that p38 phosphorylation, indicating activation of the p38 pathway, is higher in FRDA cells than in normal control cells, and that siRNA knockdown of frataxin in normal fibroblasts also increases p38 phosphorylation. Treatment of FRDA cells with p38 inhibitors recapitulates the reversal of the slow-growth phenotype induced by clone gFA11. These data highlight the involvement of the p38 MAPK pathway in the pathogenesis of FRDA and the potential use of p38 inhibitors as a treatment for FRDA
- …