14,833 research outputs found

    Radio-controlled model design and testing techniques for stall/spin evaluation of general-aviation aircraft

    Get PDF
    A relatively inexpensive radio-controlled model stall/spin test technique was developed. Operational experiences using the technique are presented. A discussion of model construction techniques, spin-recovery parachute system, data recording system, and movie camera tracking system is included. Also discussed are a method of measuring moments of inertia, scaling of engine thrust, cost and time required to conduct a program, and examples of the results obtained from the flight tests

    Evaluation of selected chemical processes for production of low-cost silicon

    Get PDF
    Plant construction costs and manufacturing costs were estimated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl4 and electrolytic recovery of zinc from ZnCl2. All of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system

    Evaluation of selected chemical processes for production of low-cost silicon, phase 2

    Get PDF
    Potential designs for an integrated fluidized-bed reactor/zinc vaporizer/SiCl4 preheater unit are being considered and heat-transfer calculations have been initiated on versions of the zinc vaporizer section. Estimates of the cost of the silicon prepared in the experimental facility have been made for projected capacities of 25, 50, 75, and 100 metric ton of silicon. A 35 percent saving is obtained in going from 25 metric ton/year to the 50 metric ton/year level. This analysis, coupled with the recognition that use of two reactors in the 50 metric ton/year version allows for continued operation (at reduced capacity) with one reactor shut down, has resulted in a recommendation for adoption of an experimental facility capacity of 50 metric ton/year or greater. At this stage, the change to a larger size facility would not increase the design costs appreciably. In the experimental support program, the effects of seed bed particle size and depth were studied, and operation of the miniplant with a new zinc vaporizer was initiated, revealing the need for modification of the latter

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Observation of the Dynamical Casimir Effect in a Superconducting Circuit

    Full text link
    One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. While initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences, for instance producing the Lamb shift of atomic spectra and modifying the magnetic moment for the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed if it might instead be possible to more directly observe the virtual particles that compose the quantum vacuum. 40 years ago, Moore suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. This effect was later named the dynamical Casimir effect (DCE). Using a superconducting circuit, we have observed the DCE for the first time. The circuit consists of a coplanar transmission line with an electrical length that can be changed at a few percent of the speed of light. The length is changed by modulating the inductance of a superconducting quantum interference device (SQUID) at high frequencies (~11 GHz). In addition to observing the creation of real photons, we observe two-mode squeezing of the emitted radiation, which is a signature of the quantum character of the generation process.Comment: 12 pages, 3 figure

    Radio Astronomy

    Get PDF
    Contains research objectives and reports on three research projects.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-0009National Science Foundation (Grant GP-7046)National Aeronautics and Space Administration (Contract NSR-22-009-120)National Aeronautics and Space Administration (Grant NsG-419
    corecore