255 research outputs found

    Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation

    Get PDF
    Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as “clusters” by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones (“domains”) for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems

    Coupled Stochastic Spatial and Non-Spatial Simulations of ErbB1 Signaling Pathways Demonstrate the Importance of Spatial Organization in Signal Transduction

    Get PDF
    BACKGROUND: The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. METHODOLOGY/PRINCIPAL FINDINGS: Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. CONCLUSIONS/SIGNIFICANCE: Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors

    DSM-5 criteria for substance use disorders: recommendations and rationale.

    Get PDF
    Since DSM-IV was published in 1994, its approach to substance use disorders has come under scrutiny. Strengths were identified (notably, reliability and validity of dependence), but concerns have also arisen. The DSM-5 Substance-Related Disorders Work Group considered these issues and recommended revisions for DSM-5. General concerns included whether to retain the division into two main disorders (dependence and abuse), whether substance use disorder criteria should be added or removed, and whether an appropriate substance use disorder severity indicator could be identified. Specific issues included possible addition of withdrawal syndromes for several substances, alignment of nicotine criteria with those for other substances, addition of biomarkers, and inclusion of nonsubstance, behavioral addictions.This article presents the major issues and evidence considered by the work group, which included literature reviews and extensive new data analyses. The work group recommendations for DSM-5 revisions included combining abuse and dependence criteria into a single substance use disorder based on consistent findings from over 200,000 study participants, dropping legal problems and adding craving as criteria, adding cannabis and caffeine withdrawal syndromes, aligning tobacco use disorder criteria with other substance use disorders, and moving gambling disorders to the chapter formerly reserved for substance-related disorders. The proposed changes overcome many problems, while further studies will be needed to address issues for which less data were available

    Single-Cell Measurements of IgE-Mediated FcεRI Signaling Using an Integrated Microfluidic Platform

    Get PDF
    Heterogeneity in responses of cells to a stimulus, such as a pathogen or allergen, can potentially play an important role in deciding the fate of the responding cell population and the overall systemic response. Measuring heterogeneous responses requires tools capable of interrogating individual cells. Cell signaling studies commonly do not have single-cell resolution because of the limitations of techniques used such as Westerns, ELISAs, mass spectrometry, and DNA microarrays. Microfluidics devices are increasingly being used to overcome these limitations. Here, we report on a microfluidic platform for cell signaling analysis that combines two orthogonal single-cell measurement technologies: on-chip flow cytometry and optical imaging. The device seamlessly integrates cell culture, stimulation, and preparation with downstream measurements permitting hands-free, automated analysis to minimize experimental variability. The platform was used to interrogate IgE receptor (FcεRI) signaling, which is responsible for triggering allergic reactions, in RBL-2H3 cells. Following on-chip crosslinking of IgE-FcεRI complexes by multivalent antigen, we monitored signaling events including protein phosphorylation, calcium mobilization and the release of inflammatory mediators. The results demonstrate the ability of our platform to produce quantitative measurements on a cell-by-cell basis from just a few hundred cells. Model-based analysis of the Syk phosphorylation data suggests that heterogeneity in Syk phosphorylation can be attributed to protein copy number variations, with the level of Syk phosphorylation being particularly sensitive to the copy number of Lyn

    High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT

    Get PDF
    In mast cells, cross-linking the high-affinity IgE receptor (FcεRI) initiates the Lyn-mediated phosphorylation of receptor ITAMs, forming phospho-ITAM binding sites for Syk. Previous immunogold labeling of membrane sheets showed that resting FcεRI colocalize loosely with Lyn, whereas cross-linked FcεRI redistribute into specialized domains (osmiophilic patches) that exclude Lyn, accumulate Syk, and are often bordered by coated pits. Here, the distribution of FcεRI β is mapped relative to linker for activation of T cells (LAT), Grb2-binding protein 2 (Gab2), two PLCγ isoforms, and the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), all implicated in the remodeling of membrane inositol phospholipids. Before activation, PLCγ1 and Gab2 are not strongly membrane associated, LAT occurs in small membrane clusters separate from receptor, and PLCγ2, that coprecipitates with LAT, occurs in clusters and along cytoskeletal cables. After activation, PLCγ2, Gab2, and a portion of p85 colocalize with FcεRI β in osmiophilic patches. LAT clusters enlarge within 30 s of receptor activation, forming elongated complexes that can intersect osmiophilic patches without mixing. PLCγ1 and another portion of p85 associate preferentially with activated LAT. Supporting multiple distributions of PI3-kinase, FcεRI cross-linking increases PI3-kinase activity in anti-LAT, anti-FcεRIβ, and anti-Gab2 immune complexes. We propose that activated mast cells propagate signals from primary domains organized around FcεRIβ and from secondary domains, including one organized around LAT

    Safety of nifedipine GITS in stable angina: The ACTION trial

    Get PDF
    Aim: We describe the safety profile of nifedipine GITS as assessed from adverse events reported in the ACTION trial in which 7,665 patients with stable, symptomatic coronary artery disease were randomly assigned nifedipine GITS or placebo and followed for a mean of 4.9 years. Methods: All adverse events were coded using the COSTART coding dictionary. The incidence rate for each event was calculated as the number of patients with the event concerned divided by the total time 'at risk'. Hazard ratios comparing nifedipine with placebo and their 95% confidence intervals were obtained by Cox proportional-hazards analysis. Results: As reported previously, nifedipine significantly reduced the incidence of cardiovascular events and procedures [hazard ratio (HR) 0.89, 95% confidence interval (CI) 0.83-0.95]. Apart from the known side effects of nifedipine, which include peripheral oedema, vasodilatation, hypotension, asthenia, constipation, leg cramps, non-specific respiratory complaints, impotence and polyuria, and which were reported more frequently in patients assigned nifedipine, the incidence rates of most other adverse events were similar. There were no differences in the occurrence of gastrointestinal haemorrhage, myocardial infarction and suicide. The rate of occurrence of death or new cancer excluding non-melanoma skin cancer for patients with no history of cancer at baseline was 2.53/100 patient years for patients assigned nifedipine and 2.37/100 patient years for patients assigned placebo (HR 1.06, 95% CI 0.93-1.22). Conclusion: Overall nifedipine GITS was well tolerated by patients with stable symptomatic angina

    Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator

    Get PDF
    Male gender is protective against multiple sclerosis and other T-cell-mediated autoimmune diseases. This protection may be due, in part, to higher androgen levels in males. Androgen binds to the androgen receptor (AR) to regulate gene expression, but how androgen protects against autoimmunity is not well understood. Autoimmune regulator (Aire) prevents autoimmunity by promoting self-antigen expression in medullary thymic epithelial cells, such that developing T cells that recognize these self-antigens within the thymus undergo clonal deletion. Here we show that androgen upregulates Aire-mediated thymic tolerance to protect against autoimmunity. Androgen recruits AR to Aire promoter regions, with consequent enhancement of Aire transcription. In mice and humans, thymic Aire expression is higher in males compared with females. Androgen administration and male gender protect against autoimmunity in a multiple sclerosis mouse model in an Aire-dependent manner. Thus, androgen control of an intrathymic Aire-mediated tolerance mechanism contributes to gender differences in autoimmunity
    • …
    corecore