852 research outputs found

    Truncation of MAT1-2-7 deregulates developmental pathways associated with sexual reproduction in Huntiella omanensis

    Get PDF
    The MAT1-1-1 and MAT1-2-1 genes are thought to be the master regulators of sexual development in most ascomycete fungi, and they are often essential for this process. In contrast, it has been suggested that the secondary mating-type genes act to calibrate the sexual cycle and can be dispensable. Recent functional characterization of genes such as Aspergillus fumigatus MAT1-2-4, Huntiella omanensis MAT1-2-7, and Botrytis cinerea MAT1-1-5 has, however, shown that these secondary genes may play more central roles in the sexual pathway and are essential for the production of mature fruiting structures. We used a comparative transcriptome sequencing (RNAseq) experiment to show that the truncation of MAT1-2-7 in the wood inhabiting H. omanensis residing in the Ceratocystidaceae is associated with the differential expression of approximately 25% of all the genes present in the genome, including the transcriptional regulators ste12, wc-2, sub1, VeA, HMG8, and pro1. This suggests that MAT1-2-7 may act as a transcription factor and that DMAT1-2-7 mutant sterility is the result of layered deregulation of a variety of signaling and developmental pathways. This study is one of only a few that details the functional characterization of a secondary MAT gene in a nonmodel species. Given that this gene is present in other Ceratocystidaceae species and that there are diverse secondary MAT genes present throughout the Pezizomycotina, further investigation into this gene and others like it will provide a clearer understanding of sexual development in these eukaryotes. IMPORTANCE Secondary mating-type genes are being described almost as quickly as new fungal genomes are being sequenced. Understanding the functions of these genes has lagged behind their description, in part due to limited taxonomic distribution, lack of conserved functional domains, and difficulties with regard to genetic manipulation protocols. This study aimed to address this by investigating a novel mating-type gene, MAT1- 2-7, for which two independent mutant strains were generated in a previous study. We characterized the molecular response to the truncation of this gene in a nonmodel, wood-infecting fungus and showed that it resulted in widespread differential expression throughout the transcriptome of this fungus. This suggests that secondary MAT genes may play a more important role than previously thought. This study also emphasizes the need for further research into the life cycles of nonmodel fungi, which often exhibit unique features that are very different from the systems understood from model species.The University of Pretoria, the Department of Science and Technology (DST)/National Research Foundation (NRF) Centre of Excellence in Tree Health Biotechnology (CTHB) as well as B.D. Wingfield’s DST/NRF SARChI chair in Fungal Genomics and A. M. Wilson’s DST/NRF Scarce Skills Postdoctoral Fellowship.https://journals.asm.org/journal/spectrumam2023BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Genetic networks that govern sexual reproduction in the Pezizomycotina

    Get PDF
    Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.https://journals.asm.org/journal/mmbrhj2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Reflections on the Cost of Low-Cost Whole Genome Sequencing: Framing the Health Policy Debate

    Get PDF
    The cost of whole genome sequencing is dropping rapidly. There has been a great deal of enthusiasm about the potential for this technological advance to transform clinical care. Given the interest and significant investment in genomics, this seems an ideal time to consider what the evidence tells us about potential benefits and harms, particularly in the context of health care policy. The scale and pace of adoption of this powerful new technology should be driven by clinical need, clinical evidence, and a commitment to put patients at the centre of health care policy

    Magnetic Fields in Star-Forming Molecular Clouds II. The Depolarization Effect in the OMC-3 Filament of Orion A

    Get PDF
    Polarized 850 micron thermal emission data of the region OMC-3 in the Orion A molecular cloud are presented. These data, taken in 1998 with the SCUBA polarimeter mounted on the James Clerk Maxwell Telescope, have been re-reduced using improved software. The polarization pattern is not suggestive of a uniform field structure local to OMC-3, nor does the orientation of the vectors align with existing polarimetry maps of the OMC-1 core 20' to the south. The depolarization toward high intensity regions cannot be explained by uniform field geometry except in the presence of changing grain structure, which is most likely to occur in regions of high density or temperature (i.e. the embedded cores). The depolarization in fact occurs along the length of the filamentary structure of OMC-3 and is not limited to the vicinity of the bright cores. Such a polarization pattern is predicted by helical field models for filamentary clouds. We present three scenarios to explain the observed polarization pattern of OMC-3 in terms of a helical field geometry. Qualitative models incorporating a helical field geometry are presented for two cases.Comment: 57 pages, 12 figures, 3 tables; accepted for publication in Ap

    Unique patterns of mating pheromone presence and absence could result in the ambiguous sexual behaviors of Colletotrichum species

    Get PDF
    Colletotrichum species are known to engage in unique sexual behaviors that differ significantly from the mating strategies of other filamentous ascomycete species. For example, most ascomycete fungi require the expression of both the MAT1-1-1 and MAT1-2-1 genes to induce sexual reproduction. In contrast, all isolates of Colletotrichum harbor only the MAT1-2-1 gene and yet, are capable of recognizing suitable mating partners and producing sexual progeny. The molecular mechanisms contributing to mating types and behaviors in Colletotrichum are, however, unknown. A comparative genomics approach analyzing 35 genomes, representing 31 Colletotrichum species and two Verticillium species, was used to elucidate a putative molecular mechanism underlying the unique sexual behaviors observed in Colletotrichum species. The existence of only the MAT1-2 idiomorph was confirmed across all species included in this study. Comparisons of the loci harboring the two mating pheromones and their cognate receptors revealed interesting patterns of gene presence and absence. The results showed that these genes have been lost multiple, independent times over the evolutionary history of this genus. These losses indicate that the pheromone pathway no longer plays an active role in mating type determination, suggesting an undiscovered mechanism by which mating partner recognition is controlled in these species. This further suggests that there has been a redirection of the underlying genetic mechanisms that regulate sexual development in Colletotrichum species. This research thus provides a foundation from which further interrogation of this topic can take place.The South African Department of Science and Innovation’s South African Research Chair Initiative (SARChI); Botanical Resources Australia—Agricultural Services, Pty. Ltd; post-doctoral grant from the University of Pretoria, South Africa; Melbourne International Fee Remission and Melbourne International Research Scholarships from the University of Melbourne, Australia.http://www.g3journal.orgam2022BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Magnetic Fields in Star-Forming Molecular Clouds. V. Submillimeter Polarization of the Barnard 1 Dark Cloud

    Full text link
    We present 850 micron polarimetry from the James Clerk Maxwell Telescope toward several dense cores within the dark cloud Barnard 1 in Perseus. Significant polarized emission is detected from across the mapped area and is not confined to the locations of bright cores. This indicates the presence of aligned grains and hence a component of the magnetic field in the plane of the sky. Polarization vectors detected away from bright cores are strongly aligned at a position angle of ~ 90 degrees (east of north), while vectors associated with bright cores show alignments of varying orientations. There is no direct correlation between the polarization angles measured in earlier optical polarimetry toward Perseus and the polarized submillimeter thermal emission. Depolarization toward high intensities is exhibited, but toward the brightest core reaches a threshold beyond which no further decrease in polarization percentage is measured. The polarized emission data from the interior envelope are compared with previously published OH Zeeman data to estimate the total field strength and orientation under the assumption of a uniform and non-uniform field component in the region. These results are rough estimates only due to the single independent detection of Zeeman splitting toward Barnard 1. The uniform field component is thus calculated to be B(0) = 31 microGauss [+/- (0.52 (north) - 0.01 (east)) - 0.86 (l.o.s.)] in the case where we have assumed the ratio of the dispersion of the line-of-sight field to the field strength to be 0.2.Comment: 35 pages, LaTeX, including 4 tables and 5 figures (2 color

    Blast from the past : a study of decades-old fungal cultures resolves a long-standing tree disease mystery

    Get PDF
    DATA AVAILABILITY : The sequences that were generated for this study have been deposited at the NCBI. The accession numbers will be made available upon publication.A root disease in plantations of Pinus radiata and Pinus pinaster, where trees died in distinct patches, was present in the Western Cape province of South Africa during the 1970s and 1980s. Phytophthora cinnamomi was initially believed to be the cause, but the disease was later ascribed to the insect-associated fungus Leptographium serpens, a fungal species residing in the Ophiostomatales. Doubt regarding the cause of the disease was raised in a later study due to the fact that most Leptographium spp., particularly those that colonise ray parenchyma tissues, which is the case for L. serpens, are not typically primary disease agents. In this study, cultures of an unidentified sterile fungus collected from the dying trees were revived and identified using DNA sequencing methods, which were not available when the disease was first studied. These cultures were identified as the pyrophillic pathogen Rhizina undulata, well-known to cause patch death of conifers in South Africa and elsewhere in the world. While the patches of dying trees no longer exist and the disease cannot be newly studied, it is most likely that the tree death originally thought to be caused by L. serpens was due primarily to R. undulata. The study provides a vivid example of the value of preserving cultures of fungi for later study and the power of modern techniques to identify fungal pathogens.The members of the Tree Protection Co-operative Programme (TPCP) and the National Research Foundation (NRF) in South Africa. Open access funding provided by University of Pretoria.https://link.springer.com/journal/42161hj2023BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc

    Child and family experiences with inborn errors of metabolism: a qualitative interview study with representatives of patient groups

    Get PDF
    Background: Patient-centered health care for children with inborn errors of metabolism (IEM) and their families is important and requires an understanding of patient experiences, needs, and priorities. IEM-specific patient groups have emerged as important voices within these rare disease communities and are uniquely positioned to contribute to this understanding. We conducted qualitative interviews with IEM patient group representatives to increase understanding of patient and family experiences, needs, and priorities and inform patient-centered research and care. Methods: We developed a sampling frame of patient groups representing IEM disease communities from Canada, the United States, and United Kingdom. With consent, we interviewed participants to explore their views on experiences, needs, and outcomes that are most important to children with IEM and their families. We analyzed the data using a qualitative descriptive approach to identify key themes and sub-themes. Results: We interviewed 18 organizational representatives between February 28 and September 17, 2014, representing 16 IEMs and/or disease categories. Twelve participants voluntarily self-identified as parents and/or were themselves patients. Three key themes emerged from the coded data: managing the uncertainty associated with raising and caring for a child with a rare disease; challenges associated with the affected child’s life transitions, and; the collective struggle for improved outcomes and interventions that rare disease communities navigate. Conclusion: Health care providers can support children with IEM and their families by acknowledging and reducing uncertainty, supporting families through children’s life transitions, and contributing to rare disease communities’ progress toward improved interventions, experiences, and outcomes
    • …
    corecore