28 research outputs found
Development of a European Combined Geodetic Network (ECGN)
To ensure the long-time stability of the terrestrial reference system with an accuracy of 10‑9 in the global and continental scale, the interactions between different time-dependent influences of the system Earth to the terrestrial reference system and the related observation has to be considered in the evaluation models. It is proposed to establish a kinematic European Combined Geodetic Network (ECGN) and to integrate the spatial and height reference system into the Earth gravity field parameter estimation. This plan is in agreement with the foreseen IAG project of an Integrated Global Geodetic Observation System (IGGOS). In selected European stations ECGN will establish the combination of time series of spatial/geometric GNSS observations, precise levelling and tide gauge records with gravity field related observations (gravity, Earth tides). Observations are complemented with meteorological parameters, surrounding information of the stations, e.g. eccentricities and ground water level. A first call for participation in the project was directed to the implementation of the ECGN stations. These stations include the standard observation techniques GNSS (GPS/GLONASS—permanent), gravity (super conducting gravimeter and/or absolute gravimeter—permanent or repeated), levelling connections to nodal points of the European levelling network (UELN) (repeated) and meteorological parameters (permanent). A basic constituent of the ECGN stations is a local network for controlling the eccentricities at the 1 mm accuracy level in all three spatial components. For the contributing observation techniques, guidelines have been agreed upon to ensure equal observation principle
Toward the establishment of the GGP-ICET Service: a new component of IGFS
International audienc
Interrelationships between Yeast Ribosomal Protein Assembly Events and Transient Ribosome Biogenesis Factors Interactions in Early Pre-Ribosomes
Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains
Observing Fennoscandian Gravity Change by Absolute Gravimetry
The Nordic countries Norway, Sweden, Denmark and Finland are a key study region for the research of glacial isostasy, and, in addition, it offers a unique opportunity for validating and testing the results of the GRACE experiment. Over a period of five years, the expected life time of GRACE, a temporal geoid variation of 3.0 mm is expected in the centre of the Fennoscandian land uplift area, corresponding to a gravity change of about 100 nm/s2. This is expected to be within the detection capabilities of GRACE. With terrestrial absolute gravimetry, the gravity change due to the land uplift can be observed with an accuracy of \ub110 to 20 nm/s2 for a 5-year period. Thus, the terrestrial insitu observations (ground-truth) may be used to validate and test the GRACE results.Since 2003, absolute gravity measurements have been performed in Fennoscandia at about 30 stations covering Norway, Sweden, Finland and Denmark. Four groups with FG5 absolute gravimeters (BKG, FGI, IfE, UMB) are engaged to survey the uplift network annually by a mutually controlled procedure. Nearly all absolute stations are colocated with permanent GPS stations. From the 2003 and 2004 comparisons between the instruments, an overall accuracy of \ub130 nm/s2 is indicated for a single absolute gravimeter and a single station determination. This is in full agreement with the project goal
Observing Fennoscandian Gravity Change by Absolute Gravimetry
The Nordic countries Norway, Sweden, Denmark and Finland are a key study region for the research of glacial isostasy, and, in addition, it offers a unique opportunity for validating and testing the results of the GRACE experiment. Over a period of five years, the expected life time of GRACE, a temporal geoid variation of 3.0 mm is expected in the centre of the Fennoscandian land uplift area, corresponding to a gravity change of about 100 nm/s2. This is expected to be within the detection capabilities of GRACE. With terrestrial absolute gravimetry, the gravity change due to the land uplift can be observed with an accuracy of \ub110 to 20 nm/s2 for a 5-year period. Thus, the terrestrial insitu observations (ground-truth) may be used to validate and test the GRACE results.Since 2003, absolute gravity measurements have been performed in Fennoscandia at about 30 stations covering Norway, Sweden, Finland and Denmark. Four groups with FG5 absolute gravimeters (BKG, FGI, IfE, UMB) are engaged to survey the uplift network annually by a mutually controlled procedure. Nearly all absolute stations are colocated with permanent GPS stations. From the 2003 and 2004 comparisons between the instruments, an overall accuracy of \ub130 nm/s2 is indicated for a single absolute gravimeter and a single station determination. This is in full agreement with the project goal
Final report of the regional key comparison Euramet.M.G-K1: European Comparison of Absolute Gravimeters ECAG-2011
During November 2011 a EURAMET key comparison of absolute gravimeters was organized in the Underground Laboratory for Geodynamics in Walferdange, Luxemburg. The comparison assembled 22 participants coming from 16 countries and four different continents. The comparison was divided into two parts: a key comparison that included six National Metrology Institutes or Designated Institutes, and a pilot study including all participants. The global result given by the pilot study confirms that all instruments are absolutely coherent with each other. The results obtained in the key comparison confirm a good agreement between the NMI instruments. Finally, a link to ICAG-2009 shows also that the NMI gravimeters are stable in time. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA)
Results from the Fifth Internationl Comparison of Absolute Gravimeters, ICAG97
The fifth in the series of International Comparisons of Absolute Gravimeters (ICAG) was held at the Bureau International des Poids et Measures (BIPM) in November 1997. Fifteen absolute gravimeters participated in the comparison. The mean gravity value obtained at station A (0.9 m) at the BIPM was found to be 980 925 707.8 µGal with a standard uncertainty of 2.8 µGal. This is consistent with the results obtained in previous comparisons at this site. Conclusions based on the analysis of the present results and proposals for future activities are presented
Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)
The Bureau International des Poids et Mesures (BIPM), Sèvres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005.
ICAG 2005 was prepared and performed as a metrological pilot study, which aimed:
(1) To determine the gravity comparison reference values;
(2) To determine the offsets of the absolute gravimeters; and
(3) As a pilot study to accumulate experience for the CIPM Key Comparisons.
This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG–RGC comparison was held at the BIPM in 1980–1981 and since then meetings have been organized every 4 years.
In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports.
Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison.</jats:p