5 research outputs found

    Sediment from Hurricane Katrina: Potential to Produce Pulmonary Dysfunction in Mice

    No full text
    On August 29, 2005, Hurricane Katrina made landfall along the Gulf Coast as a Category 3 hurricane. The associated storm surge and heavy rainfall resulted in major flooding throughout the New Orleans area. As the flood waters receded, thick sediment was left covering the ground and coating the interior of homes. This sediment was dispersed into the air and inhaled as dust by returning residents and workers. Our objective in this study was to evaluate the potential pulmonary effects associated with the respirable particulate matter (PM) derived from Hurricane Katrina (HK-PM) in mice. Samples of PM were collected from several locations along the Gulf Coast on September 30 and October 2, 2005 and had a mean aerodynamic diameter ranging from 3-5 Ī¼m). Chemical analysis and cytotoxicity assays were performed for all HK-PM samples. A few samples with varying levels of cytotoxicity were chosen for an acute inhalation exposure study. Airborne PM10 levels recorded in the New Orleans area post-Katrina were variable, ranging from 70 Ī¼g/m3 in Gentilly to 688 Ī¼g/m3 in Lakeview (residential areas). Mice exposed to one of these samples developed significant pulmonary inflammation and airways resistance and hyperresponsiveness to methacholine challenge. These studies demonstrate that dispersion of certain Katrina sediment samples through either natural (e.g., wind) or mechanical (e.g., vehicles) processes promotes airflow obstruction in mice

    Addressing systemic problems with exposure assessments to protect the publicā€™s health

    No full text
    Abstract Background Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. Methods We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. Results Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of ā€˜confidential business informationā€™ which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. Conclusion We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health

    A science-based agenda for health-protective chemical assessments and decisions: overview and consensus statement

    Get PDF
    Abstract The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded byĀ regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a ā€œsafeā€ or ā€œno-riskā€ level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection
    corecore