18 research outputs found

    An overview and prospective on Al and Al-ion battery technologies

    Get PDF
    Aluminum batteries are considered compelling electrochemical energy storage systems because of the natural abundance of aluminum, the high charge storage capacity of aluminum of 2980 mA h g−1/8046 mA h cm−3, and the sufficiently low redox potential of Al3+/Al. Several electrochemical storage technologies based on aluminum have been proposed so far. This review classifies the types of reported Al-batteries into two main groups: aqueous (Al-ion, and Al-air) and non-aqueous (aluminum graphite dual-ion, Al-organic dual-ion, Al-ion, and Al-sulfur). Specific focus is given to Al electrolyte chemistry based on chloroaluminate melts, deep eutectic solvents, polymers, and “chlorine-free” formulations

    A novel bifunctional oxygen GDE for alkaline secondary batteries

    Get PDF
    AbstractThis paper describes a novel procedure for the fabrication of a gas diffusion electrode (GDE) suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated by pre-forming a PTFE-bonded nickel powder layer on a nickel foam substrate followed by deposition of NiCo2O4 spinel electrocatalyst by dip coating in a nitrate solution and thermal decomposition. The carbon-free composition avoids concerns over carbon corrosion at the potentials for oxygen evolution. The electrode shows acceptable overpotentials for both oxygen evolution and oxygen reduction at current densities up to 100mAcm−2. Stable performance during >100 successive, 1h oxygen reduction/evolution cycles at a current density of 20mAcm−2 in 8M NaOH at 333K was achieved

    A novel bifunctional oxygen GDE for alkaline secondary batteries

    Get PDF
    This paper describes a novel procedure for the fabrication of a gas diffusion electrode (GDE) suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated by pre-forming a PTFE-bonded nickel powder layer on a nickel foam substrate followed by deposition of NiCo2O4 spinel electrocatalyst by dip coating in a nitrate solution and thermal decomposition. The carbon-free composition avoids concerns over carbon corrosion at the potentials for oxygen evolution. The electrode shows acceptable overpotentials for both oxygen evolution and oxygen reduction at current densities up to 100 mA cm−2. Stable performance during >100 successive, 1 h oxygen reduction/evolution cycles at a current density of 20 mA cm−2 in 8 M NaOH at 333 K was achieved.European Commissio

    A mathematical model for the soluble lead-acid flow battery

    No full text
    The soluble lead-acid battery is a redox flow cell that uses a single reservoir to store the electrolyte and does not require a microporous separator or membrane, allowing a simpler design and a substantial reduction in cost. In this paper, a transient model for a reversible, lead-acid flow battery incorporating mass and charge transport and surface electrode reactions is developed. The charge–discharge behavior is complicated by the formation and subsequent oxidation of a complex oxide layer on the positive electrode surface, which is accounted for in the model. The full charge/discharge behavior over two cycles is simulated for many cases. Experiments measuring the cell voltage during repeated charge–discharge cycles are described, and the simulation results are compared to the laboratory data, demonstrating good agreement. The model is then employed to investigate the effects of variations in the current density on the performance of the battery

    Performance of recovered and reagent grade electrolyte in a soluble lead redox cell

    No full text
    This paper presents the performance of ‘recovered’ electrolyte for the soluble lead flow battery, made by recycling conventional lead-acid battery electrodes, and compares it to reagent grade electrolyte for the same system. The two electrolyte compositions were cycled in static and flow cells and their charge, energy, and voltage efficiencies compared. The average charge, energy, and voltage efficiencies of static cells using 1.0 mol·dm¯³ Pb²+ recovered electrolyte were 89%, 86%, and 96%, while cells using reagent grade electrolyte averaged 63%, 49%, and 78%, respectively. The average charge efficiency of flow cells with recovered electrolyte was consistently above 80% and within 10% of the average for cells with reagent grade electrolyte. The average energy and voltage efficiencies were 62% and 73%, respectively, diverting from averages for the reagent grade electrolyte cells by less than 15%. The highest average cycle life was for cells with recovered electrolyte at 187 cycles, while that of cells with reagent grade electrolyte peaked at 102. Trace elements in both electrolyte compositions were analysed and their presence in the recovered electrolyte appears to enhance performance of the soluble lead cells. The recovered electrolyte is an electrochemically viable substitute for the reagent grade electrolyte.</p

    Optimization of dual energy storage system for high-performance electric vehicles

    No full text
    For high-performance Electric Vehicles (EVs) that operate under aggressive driving conditions, dual Energy Storage System (ESS) may be applied instead of battery-only ESS to reduce mass, volume or initial cost. Using the proposed configuration methods, a quantitative criterion is put forward to judge the rationality of applying dual ESS with different driving cycles. Optimal configuration is acquired for selected dual ESS topology and vehicle prototype by Linear Programming (LP). Results show that compared to battery-only ESS, dual ESS can achieve lower mass and initial cost, but has higher volume.</p

    A novel flow battery—A lead-acid battery based on an electrolyte with soluble lead(II) V. Studies of the lead negative electrode

    No full text
    The structure of lead deposits (approximately 1 mm thick) formed in conditions likely to be met at the negative electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. The quality of the lead deposit could be improved by appropriate additives and the preferred additive was shown to be the hexadecyltrimethylammonium cation, C16H33(CH3)3N+, at a concentration of 5 mM. In the presence of this additive, thick layers with acceptable uniformity could be formed over a range of current densities (20–80 mA cm?2) and solution compositions. While electrolyte compositions with lead(II) concentrations in the range 0.1–1.5 M and methanesulfonic acid concentrations in the range 0–2.4 M have been investigated, the best quality deposits are formed at lower concentrations of both species. Surprisingly, the acid concentration was more important than the lead(II) concentration; hence a possible initial electrolyte composition is 1.2 M Pb(II) + 5 mM C16H33(CH3)3N+ without added acid

    A novel flow battery — a lead-acid battery based on an electrolyte with soluble lead(II): part VI. Studies of the lead dioxide positive electrode

    No full text
    The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities &gt;100 mA cm?2 in electrolytes containing 0.1–1.5 M lead(II) and methanesulfonic acid concentrations in the range 0–2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C16H33(CH3)3N+. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed

    An overview and prospective on Al and Al-ion battery technologies

    Get PDF
    Aluminum batteries are considered compelling electrochemical energy storage systems because of the natural abundance of aluminum, the high charge storage capacity of aluminum of 2980 mA h g−1/8046 mA h cm−3, and the sufficiently low redox potential of Al3+/Al. Several electrochemical storage technologies based on aluminum have been proposed so far. This review classifies the types of reported Al-batteries into two main groups: aqueous (Al-ion, and Al-air) and non-aqueous (aluminum graphite dual-ion, Al-organic dual-ion, Al-ion, and Al-sulfur). Specific focus is given to Al electrolyte chemistry based on chloroaluminate melts, deep eutectic solvents, polymers, and “chlorine-free” formulations.ISSN:0378-7753ISSN:1873-275

    Environmental screening of electrode materials for a rechargeable aluminum battery with an AlCl<sub>3</sub>/EMIMCl electrolyte

    No full text
    Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl3/EMIMCl (1-ethyl-3-methylimidazolium chloride) room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a "silver bullet" for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.</p
    corecore