4 research outputs found

    Swimming in circles: Motion of bacteria near solid boundaries

    Get PDF
    Near a solid boundary, E. coli swims in clockwise circular motion. We provide a hydrodynamic model for this behavior. We show that circular trajectories are natural consequences of force-free and torque-free swimming, and the hydrodynamic interactions with the boundary, which also leads to a hydrodynamic trapping of the cells close to the surface. We compare the results of the model with experimental data and obtain reasonable agreement. In particular, we show that the radius of curvature of the trajectory increases with the length of the bacterium body.Comment: Also available at http://people.deas.harvard.edu/~lauga
    corecore