12 research outputs found
Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2
The oxidation of methane, the main component of natural gas, to selectively form oxygenated chemical feedstocks using molecular oxygen has been a long-standing grand challenge in catalysis. Here, using gold nanoparticles supported on the zeolite ZSM-5, we introduce a method to oxidize methane to methanol and acetic acid in water at temperatures between 120 and 240 °C using molecular oxygen in the absence of any added coreductant. Electron microscopy reveals that the catalyst does not contain gold atoms or clusters, but rather gold nanoparticles are the active component, while a mechanism involving surface adsorbed species is proposed in which methanol and acetic acid are formed via parallel pathways
Crystal binding (interatomic forces): Metallic bonding and crystals
Metal bonds differ from ionic and covalent bonds in the degree of delocalization of electrons between nuclei. In this chapter we will use the ideas of band theory to look at the way these delocalized electrons can be described mathematically. A tight binding approach helps identify electron states that stabilize the structure (bonding states) or destabilize the system if occupied (anti-bonding states). Density of states per energy unit is compared between bands formed from different atomic orbitals in 1-D examples. Band theory is then applied to understand the crystal structures taken on by the first row transition metals
Methane Oxidation to Methanol in Water
ConspectusMethane represents one of the most abundant carbon sources for fuel or chemical production. However, remote geographical locations and high transportation costs result in a substantial proportion being flared at the source. The selective oxidation of methane to methanol remains a grand challenge for catalytic chemistry due to the large energy barrier for the initial C-H activation and prevention of overoxidation to CO2. Indirect methods such as steam reforming produce CO and H2 chemical building blocks, but they consume large amounts of energy over multistage processes. This makes the development of the low-temperature selective oxidation of methane to methanol highly desirable and explains why it has remained an active area of research over the last 50 years.The thermodynamically favorable oxidation of methane to methanol would ideally use only molecular oxygen. Nature effects this transformation with the enzyme methane monooxygenase (MMO) in aqueous solution at ambient temperature with the addition of 2 equiv of a reducing cofactor. MMO active sites are Fe and Cu oxoclusters, and the incorporation of these metals into zeolitic frameworks can result in biomimetic activity. Most approaches to methane oxidation using metal-doped zeolites use high temperature with oxygen or N2O; however, demonstrations of catalytic cycles without catalyst regeneration cycles are limited. Over the last 10 years, we have developed Fe-Cu-ZSM-5 materials for the selective oxidation of methane to methanol under aqueous conditions at 50 \ub0C using H2O2 as an oxidant (effectively O2 + 2 reducing equiv), which compete with MMO in terms of activity. To date, these materials are among the most active and selective catalysts for methane oxidation under this mild condition, but industrially, H2O2 is an expensive oxidant to use in the production of methanol.This observation of activity under mild conditions led to new approaches to utilize O2 as the oxidant. Supported precious metal nanoparticles have been shown to be active for a range of C-H activation reactions using O2 and H2O2, but the rapid decomposition of H2O2 over metal surfaces limits efficiency. We identified that this decomposition could be minimized by removing the support material and carrying out the reaction with colloidal AuPd nanoparticles. The efficiency of methanol production with H2O2 consumption was increased by 4 orders of magnitude, and crucially it was demonstrated for the first time that molecular O2 could be incorporated into the methanol produced with 91% selectivity. The understanding gained from these two approaches provides valuable insight into possible new routes to selective methane oxidation which will be presented here in the context of our own research in this area
Metal oxides
This article details the preparation, catalytic activity, computer modeling, and design of heterogeneous oxide catalysts
Perfluoroaryl boryl complexes: synthesis, spectroscopic and structural characterisation of a complex containing the bis(pentafluorophenyl)boryl ligand
The synthesis, spectroscopic and structural characterisation of the bis(pentafluorophenyl)boryl derivative CpFe(CO)2B(C6F5)2 are reported
The conversion of levulinic acid into γ-valerolactone using Cu-ZrO <inf>2</inf> catalysts
A series of Cu–ZrO2 catalysts prepared by a co-precipitation method were studied for the hydrogenation of levulinic acid to give γ-valerolactone (GVL). The effects of a range of catalyst preparation parameters, namely molar Cu/Zr ratio, calcination temperature and the ageing time of the precipitates, were systematically investigated. The molar Cu/Zr ratio was found to have a strong influence on the BET surface area of the material leading to a high activity for catalysts prepared with a Cu/Zr molar ratio of unity. Using this molar ratio the calcination temperature was varied from 300 °C to 800 °C, the material calcined at 400 °C showed the highest activity. Increasing the ageing time used in the catalyst preparation identified 6 h as the optimum to achieve the highest activity for LA conversion. Based on characterisation of all materials we conclude that the active Cu species is present in only low concentration suggesting that it should be possible to produce a catalyst of high activity with much lower Cu content
xNi–yCu–ZrO<inf>2</inf> catalysts for the hydrogenation of levulinic acid to gamma valorlactone
We have investigated xNi–yCu–ZrO2 catalysts for the selective synthesis of γ-valerolactone from levulinic acid (LA). A series of xNi–yCu–ZrO2 catalysts with a consistent metal loading of 50% but varying Ni and Cu composition were prepared by an oxalate gel precipitation method and tested for LA hydrogenation. Ni-rich catalysts showed higher catalytic activity compared with Cu-rich formulations with a 45Ni–5Cu–ZrO2 composition yielding 76% γ-valerolactone after a reaction time of 30 min at 200 °C. Characterisation of the materials by XRD, surface area measurements and TPR allow us to attribute the differences in performance seen for different compositions to particle size and nanoparticle dispersion effects. DFT calculations also showed that a shift of d-band centre to higher energies with the mole fraction of Ni in Cu–Ni alloys would be expected to lead to improved hydrogen dissociation in Ni-rich catalysts and so aid hydrogenation activit
DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles
A combination of experimental spectroscopies (UV-vis and Fourier-transform infrared) and computational modeling was used to investigate the coordination of small ligands (aminopropanol and propanediol) to Pd species during the metal nanoparticle formation process. Differences emerged between O- (propanediol) and N-containing (aminopropanol) ligands. In particular, a strong interaction between the NH amino group and Pd2+ ions could be inferred on the basis of spectroscopic evidences, which was corroborated by theoretical simulations, which confirmed the preferential coordination of aminopropanol through the NH group. This interaction seems to potentially cause the aminopropanol ligand to control the particle shape through a selective blocking of Pd(100) facets, which promote the growth on the Pd(111) facets
The Effects of Dopants on the Cu-ZrO <inf>2</inf> Catalyzed Hydrogenation of Levulinic Acid
Catalytic hydrogenation of levulinic acid to form γ-valerolactone was studied over Cu–ZrO2 catalysts doped with metal oxides from the first-row transition metals. The Cu–ZrO2 material was prepared by oxalate gel coprecipitation, and dopants were added by an incipient wetness approach. The addition of 1% Mn into Cu–ZrO2 significantly increases the yield of γ-valerolactone, and the catalytic activity of Mn/Cu–ZrO2 was found to be 1.6 times higher than that of the undoped Cu–ZrO2 catalyst. Catalyst characterization suggests that the Mn dopant improves the dispersion of Cu on the surface of ZrO2. Kinetic studies show that the reaction order with respect to the substrate concentration is approximately zero. However, the order of reaction with respect to the partial pressure of H2 is different for the Mn/Cu–ZrO2 and Cu–ZrO2 catalysts. Comparison of reaction products from reactions carried out in H2O and D2O solvents using 1H NMR and 13C NMR show that there is a pre-equilibrium keto–enol isomerization step under our reaction conditions. DFT calculations show that the enol isomers have a higher affinity for the Cu surface, which may improve the availability of the substrate in the hydrogenation step of the reaction