59 research outputs found

    Interferometric imaging of the high-redshift radio galaxy, 4C60.07: An SMA, Spitzer and VLA study reveals a binary AGN/starburst

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Blackwell / RAS. DOI: 10.1111/j.1365-2966.2008.13811.xPeer reviewe

    Multiwavelength Variability of Sagittarius A* in 2019 July

    Get PDF
    We report timing analysis of near-infrared (NIR), X-ray, and sub-millimeter (submm) data during a three-day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 micron with the Spitzer Space Telescope, 2-8 keV with the Chandra X-ray Observatory, 3-70 keV with NuSTAR, 340 GHz with ALMA, and at 2.2 micron with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submm and the infrared at 99% confidence. July 18 captured a moderately bright NIR flare (F_K ~ 15 mJy) simultaneous with an X-ray flare (F ~ 0.1 cts/s) that most likely preceded bright submm flux (F ~ 5.5 Jy) by about +34 (+14 -33) minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submm emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submm once the synchrotron-self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a non-thermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submm flare with the NIR/X-ray emission.Comment: Accepted for publication in The Astrophysical Journa

    UBVRI Light curves of 44 Type Ia supernovae

    Get PDF
    We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∼40% intrinsic scatter compared to the B band

    The properties of 70um selected galaxies in the Extended Groth Strip

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.12899.xPeer reviewe

    TRACING MOLECULAR HYDROGEN WITH ATOMIC HYDROGEN IN M81 AND OTHER NEARBY GALAXIES

    No full text

    Interstellar absorption lines toward NGC 2264 and AFGL 2591: Abundances of H2, H+3 and CO

    No full text
    Interstellar absorption-line spectroscopy of NGC 2264 is reported which shows that the CO molecule has a column density of 5 x 10 to the 18th/sq cm and a rotational excitation temperature of 28 K. A direct upper limit on the H2 column density implies that at least 6 percent of a solar carbon abundance is in the form of CO. The upper limit on the H3(+) abundance implies that the cosmic-ray ionization rate is of the order of 10 to the -16th/s or less. The H3(+) upper limit, together with a previous radio detection of H2D(+) emission, implies either an enormous overabundance of the deuterated molecule or else that most of the radio emission comes from clouds not located directly between use and the infrared source. Observations of the sources AFGL 2591 and NGC 2024 IRS2 indicate that upper limits on H3(+) imply cosmic ray ionization rates of less than 3 and 60 x 10 to the -17th/s, respectively.Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Interstellar absorption lines toward NGC 2264 and AFGL 2591: Abundances of H2, H+3 and CO

    No full text
    Interstellar absorption-line spectroscopy of NGC 2264 is reported which shows that the CO molecule has a column density of 5 x 10 to the 18th/sq cm and a rotational excitation temperature of 28 K. A direct upper limit on the H2 column density implies that at least 6 percent of a solar carbon abundance is in the form of CO. The upper limit on the H3(+) abundance implies that the cosmic-ray ionization rate is of the order of 10 to the -16th/s or less. The H3(+) upper limit, together with a previous radio detection of H2D(+) emission, implies either an enormous overabundance of the deuterated molecule or else that most of the radio emission comes from clouds not located directly between use and the infrared source. Observations of the sources AFGL 2591 and NGC 2024 IRS2 indicate that upper limits on H3(+) imply cosmic ray ionization rates of less than 3 and 60 x 10 to the -17th/s, respectively
    • …
    corecore